Farnsworth

Farnsworth

Farnsworth gives Claude persistent memory and autonomous agent capabilities. It runs locally and provides Hierarchical Memory (Working -> Episodic -> Archival), a Multi-Model Swarm (combining Ollama models for better reasoning), and specialized agents for Web Browsing, Vision (CLIP), and Voice (Whis

Category
Visit Server

README

๐Ÿง  Farnsworth: Your Claude Companion AI

9crfy4udrHQo8eP6mP393b5qwpGLQgcxVg9acmdwBAGS <div align="center">

Give Claude superpowers: persistent memory, model swarms, multimodal understanding, and self-evolution.

Version Python License Claude Code Docker Models

Documentation โ€ข Roadmap โ€ข Contributing โ€ข Docker

</div>


๐ŸŽฏ What is Farnsworth?

Farnsworth is a companion AI system that integrates with Claude Code to give Claude capabilities it doesn't have on its own:

Without Farnsworth With Farnsworth
๐Ÿšซ Claude forgets everything between sessions โœ… Claude remembers your preferences forever
๐Ÿšซ Claude is a single model โœ… Model Swarm: 12+ models collaborate via PSO
๐Ÿšซ Claude can't see images or hear audio โœ… Multimodal: vision (CLIP/BLIP) + voice (Whisper)
๐Ÿšซ Claude never learns from feedback โœ… Claude evolves and adapts to you
๐Ÿšซ Single user only โœ… Team collaboration with shared memory
๐Ÿšซ High RAM/VRAM requirements โœ… Runs on <2GB RAM with efficient models

All processing happens locally on your machine. Your data never leaves your computer.


โœจ What's New in v0.5.0

  • ๐Ÿ Model Swarm - PSO-based collaborative inference with multiple small models
  • ๐Ÿ”ฎ Proactive Intelligence - Anticipatory suggestions based on context and habits
  • ๐Ÿš€ 12+ New Models - Phi-4-mini, SmolLM2, Qwen3-4B, TinyLlama, BitNet 2B
  • โšก Ultra-Efficient - Run on <2GB RAM with TinyLlama, Qwen3-0.6B
  • ๐ŸŽฏ Smart Routing - Mixture-of-Experts automatically picks best model per task
  • ๐Ÿ”„ Speculative Decoding - 2.5x speedup with draft+verify pairs
  • ๐Ÿ“Š Hardware Profiles - Auto-configure based on your available resources

Previously Added (v0.4.0)

  • ๐Ÿ–ผ๏ธ Vision Module - CLIP/BLIP image understanding, VQA, OCR
  • ๐ŸŽค Voice Module - Whisper transcription, speaker diarization, TTS
  • ๐Ÿ“ฆ Docker Support - One-command deployment with GPU support
  • ๐Ÿ‘ฅ Team Collaboration - Shared memory pools, multi-user sessions

๐Ÿ Model Swarm: Collaborative Multi-Model Inference

The Model Swarm system enables multiple small models to work together, achieving better results than any single model:

Swarm Strategies

Strategy Description Best For
PSO Collaborative Particle Swarm Optimization guides model selection Complex tasks
Parallel Vote Run 3+ models, vote on best response Quality-critical
Mixture of Experts Route to specialist per task type General use
Speculative Ensemble Fast model drafts, strong model verifies Speed + quality
Fastest First Start fast, escalate if confidence low Low latency
Confidence Fusion Weighted combination of outputs High reliability

๐Ÿ—๏ธ Architecture & Privacy

Farnsworth runs 100% locally on your machine.

  • No Server Costs: You do not need to pay for hosting.
  • Your Data: All memories and files stay on your computer.
  • How it connects: The Claude Desktop App spawns Farnsworth as a background process using the Model Context Protocol (MCP).

Supported Models (Jan 2025)

Model Params RAM Strengths
Phi-4-mini-reasoning 3.8B 6GB Rivals o1-mini in math/reasoning
Phi-4-mini 3.8B 6GB GPT-3.5 class, 128K context
DeepSeek-R1-1.5B 1.5B 4GB o1-style reasoning, MIT license
Qwen3-4B 4B 5GB MMLU-Pro 74%, multilingual
SmolLM2-1.7B 1.7B 3GB Best quality at size
Qwen3-0.6B 0.6B 2GB Ultra-light, 100+ languages
TinyLlama-1.1B 1.1B 2GB Fastest, edge devices
BitNet-2B 2B 1GB Native 1-bit, 5-7x CPU speedup
Gemma-3n-E2B 2B eff 4GB Multimodal (text/image/audio)
Phi-4-multimodal 5.6B 8GB Vision + speech + reasoning

Hardware Profiles

Farnsworth auto-configures based on your hardware:

minimal:     # <4GB RAM: TinyLlama, Qwen3-0.6B
cpu_only:    # 8GB+ RAM, no GPU: BitNet, SmolLM2
low_vram:    # 2-4GB VRAM: DeepSeek-R1, Qwen3-0.6B
medium_vram: # 4-8GB VRAM: Phi-4-mini, Qwen3-4B
high_vram:   # 8GB+ VRAM: Full swarm with verification

โšก Quick Start

๐Ÿ“ฆ Option 1: One-Line Install (Recommended)

Farnsworth is available on PyPI. This is the easiest way to get started.

pip install farnsworth-ai

Running the Server:

# Start the MCP server
farnsworth-server

# Or customize configuration
farnsworth-server --debug --port 8000

๐Ÿณ Option 2: Docker

git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
docker-compose -f docker/docker-compose.yml up -d

๐Ÿ› ๏ธ Option 3: Source (For Developers)

git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
pip install -r requirements.txt

๐Ÿ”Œ Configure Claude Code

Add to your Claude Code MCP settings (usually found in claude_desktop_config.json):

For PyPI Install:

{
  "mcpServers": {
    "farnsworth": {
      "command": "farnsworth-server",
      "args": [],
      "env": {
        "FARNSWORTH_LOG_LEVEL": "INFO"
      }
    }
  }
}

๐Ÿ“– Full Installation Guide โ†’


๐ŸŒŸ Key Features

๐Ÿง  Advanced Memory System

Claude finally remembers! Multi-tier hierarchical memory:

Memory Type Description
Working Memory Current conversation context
Episodic Memory Timeline of interactions, "on this day" recall
Semantic Layers 5-level abstraction hierarchy
Knowledge Graph Entities, relationships, temporal edges
Archival Memory Permanent vector-indexed storage
Memory Dreaming Background consolidation during idle time

๐Ÿค– Agent Swarm (11 Specialists)

Claude can delegate tasks to AI agents:

Core Agents Description
Code Agent Programming, debugging, code review
Reasoning Agent Logic, math, step-by-step analysis
Research Agent Information gathering, summarization
Creative Agent Writing, brainstorming, ideation
Advanced Agents (v0.3+) Description
Planner Agent Task decomposition, dependency tracking
Critic Agent Quality scoring, iterative refinement
Web Agent Intelligent browsing, form filling
FileSystem Agent Project understanding, smart search
Collaboration (v0.3+) Description
Agent Debates Multi-perspective synthesis
Specialization Learning Skill development, task routing
Hierarchical Teams Manager coordination, load balancing

๐Ÿ–ผ๏ธ Vision Understanding (v0.4+)

See and understand images:

  • CLIP Integration - Zero-shot classification, image embeddings
  • BLIP Integration - Captioning, visual question answering
  • OCR - Extract text from images (EasyOCR)
  • Scene Graphs - Extract objects and relationships
  • Image Similarity - Compare and search images

๐ŸŽค Voice Interaction (v0.4+)

Hear and speak:

  • Whisper Transcription - Real-time and batch processing
  • Speaker Diarization - Identify different speakers
  • Text-to-Speech - Multiple voice options
  • Voice Commands - Natural language control
  • Continuous Listening - Hands-free mode

๐Ÿ‘ฅ Team Collaboration (v0.4+)

Work together with shared AI:

  • Shared Memory Pools - Team knowledge bases
  • Multi-User Support - Individual profiles and preferences
  • Permission System - Role-based access control
  • Collaborative Sessions - Real-time multi-user interaction
  • Audit Logging - Compliance-ready access trails

๐Ÿ“ˆ Self-Evolution

Farnsworth learns from your feedback and improves automatically:

  • Fitness Tracking - Monitors task success, efficiency, satisfaction
  • Genetic Optimization - Evolves better configurations over time
  • User Avatar - Builds a model of your preferences
  • LoRA Evolution - Adapts model weights to your usage

๐Ÿ” Smart Retrieval (RAG 2.0)

Self-refining retrieval that gets better at finding relevant information:

  • Hybrid Search - Semantic + BM25 keyword search
  • Query Understanding - Intent classification, expansion
  • Multi-hop Retrieval - Complex question answering
  • Context Compression - Token-efficient memory injection
  • Source Attribution - Confidence scoring

๐Ÿ› ๏ธ Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                      Claude Code                             โ”‚
โ”‚              (Your AI Programming Partner)                   โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                              โ”‚ MCP Protocol
                              โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                  Farnsworth MCP Server                       โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”       โ”‚
โ”‚  โ”‚ Memory   โ”‚ โ”‚ Agent    โ”‚ โ”‚Evolution โ”‚ โ”‚Multimodalโ”‚       โ”‚
โ”‚  โ”‚ Tools    โ”‚ โ”‚ Tools    โ”‚ โ”‚ Tools    โ”‚ โ”‚ Tools    โ”‚       โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
          โ”‚                โ”‚                โ”‚
          โ–ผ                โ–ผ                โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   Memory     โ”‚  โ”‚    Agent     โ”‚  โ”‚  Multimodal  โ”‚
โ”‚   System     โ”‚  โ”‚    Swarm     โ”‚  โ”‚   Engine     โ”‚
โ”‚              โ”‚  โ”‚              โ”‚  โ”‚              โ”‚
โ”‚ โ€ข Episodic   โ”‚  โ”‚ โ€ข Planner    โ”‚  โ”‚ โ€ข Vision     โ”‚
โ”‚ โ€ข Semantic   โ”‚  โ”‚ โ€ข Critic     โ”‚  โ”‚   (CLIP/BLIP)โ”‚
โ”‚ โ€ข Knowledge  โ”‚  โ”‚ โ€ข Web        โ”‚  โ”‚ โ€ข Voice      โ”‚
โ”‚   Graph v2   โ”‚  โ”‚ โ€ข FileSystem โ”‚  โ”‚   (Whisper)  โ”‚
โ”‚ โ€ข Archival   โ”‚  โ”‚ โ€ข Debates    โ”‚  โ”‚ โ€ข OCR        โ”‚
โ”‚ โ€ข Sharing    โ”‚  โ”‚ โ€ข Teams      โ”‚  โ”‚ โ€ข TTS        โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
          โ”‚                โ”‚                โ”‚
          โ–ผ                โ–ผ                โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Evolution   โ”‚  โ”‚Collaboration โ”‚  โ”‚   Storage    โ”‚
โ”‚   Engine     โ”‚  โ”‚   System     โ”‚  โ”‚   Backends   โ”‚
โ”‚              โ”‚  โ”‚              โ”‚  โ”‚              โ”‚
โ”‚ โ€ข Genetic    โ”‚  โ”‚ โ€ข Multi-User โ”‚  โ”‚ โ€ข FAISS      โ”‚
โ”‚   Optimizer  โ”‚  โ”‚ โ€ข Shared     โ”‚  โ”‚ โ€ข ChromaDB   โ”‚
โ”‚ โ€ข Fitness    โ”‚  โ”‚   Memory     โ”‚  โ”‚ โ€ข Redis      โ”‚
โ”‚   Tracker    โ”‚  โ”‚ โ€ข Sessions   โ”‚  โ”‚ โ€ข SQLite     โ”‚
โ”‚ โ€ข LoRA       โ”‚  โ”‚ โ€ข Permissionsโ”‚  โ”‚              โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
          โ”‚                โ”‚                โ”‚
          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                           โ”‚
                           โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚                   Model Swarm (v0.5+)                        โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”   โ”‚
โ”‚  โ”‚              PSO Collaborative Engine                โ”‚   โ”‚
โ”‚  โ”‚   โ€ข Particle positions = model configs              โ”‚   โ”‚
โ”‚  โ”‚   โ€ข Velocity = adaptation direction                 โ”‚   โ”‚
โ”‚  โ”‚   โ€ข Global/personal best tracking                   โ”‚   โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜   โ”‚
โ”‚                           โ”‚                                 โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”       โ”‚
โ”‚  โ”‚ Phi-4    โ”‚ โ”‚DeepSeek  โ”‚ โ”‚ Qwen3    โ”‚ โ”‚ SmolLM2  โ”‚       โ”‚
โ”‚  โ”‚ mini     โ”‚ โ”‚ R1-1.5B  โ”‚ โ”‚ 0.6B/4B  โ”‚ โ”‚ 1.7B     โ”‚       โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜       โ”‚
โ”‚  โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”       โ”‚
โ”‚  โ”‚TinyLlama โ”‚ โ”‚ BitNet   โ”‚ โ”‚ Gemma    โ”‚ โ”‚ Cascade  โ”‚       โ”‚
โ”‚  โ”‚ 1.1B     โ”‚ โ”‚ 2B(1-bit)โ”‚ โ”‚ 3n-E2B   โ”‚ โ”‚ (hybrid) โ”‚       โ”‚
โ”‚  โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜       โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ”ง Tools Available to Claude

Once connected, Claude has access to these tools:

Tool Description
farnsworth_remember(content, tags) Store information in long-term memory
farnsworth_recall(query, limit) Search and retrieve relevant memories
farnsworth_delegate(task, agent_type) Delegate to specialist agent
farnsworth_evolve(feedback) Provide feedback for system improvement
farnsworth_status() Get system health and statistics
farnsworth_vision(image, task) Analyze images (caption, VQA, OCR)
farnsworth_voice(audio, task) Process audio (transcribe, diarize)
farnsworth_collaborate(action, ...) Team collaboration operations
farnsworth_swarm(prompt, strategy) NEW: Multi-model collaborative inference

๐Ÿ“ฆ Docker Deployment

Multiple deployment profiles available:

# Basic deployment
docker-compose -f docker/docker-compose.yml up -d

# With GPU support
docker-compose -f docker/docker-compose.yml --profile gpu up -d

# With Ollama + ChromaDB
docker-compose -f docker/docker-compose.yml --profile ollama --profile chromadb up -d

# Development mode (hot reload + debugger)
docker-compose -f docker/docker-compose.yml --profile dev up -d

See docker/docker-compose.yml for all options.


๐Ÿ“Š Dashboard

Farnsworth includes a Streamlit dashboard for visualization:

python main.py --ui
# Or with Docker:
docker-compose -f docker/docker-compose.yml --profile ui-only up -d

<details> <summary>๐Ÿ“ธ Dashboard Features</summary>

  • Memory Browser - Search and explore all stored memories
  • Episodic Timeline - Visual history of interactions
  • Knowledge Graph - 3D entity relationships
  • Agent Monitor - Active agents and task history
  • Evolution Dashboard - Fitness metrics and improvement trends
  • Team Collaboration - Shared pools and active sessions
  • Model Swarm Monitor - PSO state, model performance, strategy stats

</details>


๐Ÿš€ Roadmap

See ROADMAP.md for detailed plans.

Completed โœ…

  • v0.1.0 - Core memory, agents, evolution
  • v0.2.0 - Enhanced memory (episodic, semantic, sharing)
  • v0.3.0 - Advanced agents (planner, critic, web, filesystem, debates, teams)
  • v0.4.0 - Multimodal (vision, voice) + collaboration + Docker
  • v0.5.0 - Model Swarm + 12 new models + hardware profiles

Coming Next

  • ๐ŸŽฌ Video understanding and summarization
  • ๐Ÿ” Encryption at rest (AES-256)
  • โ˜๏ธ Cloud deployment templates (AWS, Azure, GCP)
  • ๐Ÿ“Š Performance optimization (<100ms recall)

๐Ÿ’ก Why "Farnsworth"?

Named after Professor Hubert J. Farnsworth from Futurama - a brilliant inventor who created countless gadgets and whose catchphrase "Good news, everyone!" perfectly captures what we hope you'll feel when using this tool with Claude.


๐Ÿ“‹ Requirements

Minimum Recommended With Full Swarm
Python 3.10+ Python 3.11+ Python 3.11+
4GB RAM 8GB RAM 16GB RAM
2-core CPU 4-core CPU 8-core CPU
5GB storage 20GB storage 50GB storage
- 4GB VRAM 8GB+ VRAM

Supported Platforms: Windows 10+, macOS 11+, Linux

Optional Dependencies:

  • ollama - Local LLM inference (recommended)
  • llama-cpp-python - Direct GGUF inference
  • torch - GPU acceleration
  • transformers - Vision/Voice models
  • playwright - Web browsing agent
  • whisper - Voice transcription

๐Ÿ“„ License

Farnsworth is dual-licensed:

Use Case License
Personal / Educational / Non-commercial FREE
Commercial (revenue > $1M or enterprise) Commercial License Required

See LICENSE for details. For commercial licensing, contact via GitHub.


๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Priority Areas:

  • Video understanding module
  • Cloud deployment templates
  • Performance benchmarks
  • Additional model integrations
  • Documentation improvements

๐Ÿ“š Documentation


๐Ÿ”— Research References

Model Swarm implementation inspired by:


โญ Star History

If Farnsworth helps you, consider giving it a star! โญ


<div align="center">

Built with โค๏ธ for the Claude community

"Good news, everyone!" - Professor Farnsworth

Report Bug โ€ข Request Feature โ€ข Get Commercial License

</div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured