Farnsworth
Farnsworth gives Claude persistent memory and autonomous agent capabilities. It runs locally and provides Hierarchical Memory (Working -> Episodic -> Archival), a Multi-Model Swarm (combining Ollama models for better reasoning), and specialized agents for Web Browsing, Vision (CLIP), and Voice (Whis
README
๐ง Farnsworth: Your Claude Companion AI
9crfy4udrHQo8eP6mP393b5qwpGLQgcxVg9acmdwBAGS <div align="center">
Give Claude superpowers: persistent memory, model swarms, multimodal understanding, and self-evolution.
Documentation โข Roadmap โข Contributing โข Docker
</div>
๐ฏ What is Farnsworth?
Farnsworth is a companion AI system that integrates with Claude Code to give Claude capabilities it doesn't have on its own:
| Without Farnsworth | With Farnsworth |
|---|---|
| ๐ซ Claude forgets everything between sessions | โ Claude remembers your preferences forever |
| ๐ซ Claude is a single model | โ Model Swarm: 12+ models collaborate via PSO |
| ๐ซ Claude can't see images or hear audio | โ Multimodal: vision (CLIP/BLIP) + voice (Whisper) |
| ๐ซ Claude never learns from feedback | โ Claude evolves and adapts to you |
| ๐ซ Single user only | โ Team collaboration with shared memory |
| ๐ซ High RAM/VRAM requirements | โ Runs on <2GB RAM with efficient models |
All processing happens locally on your machine. Your data never leaves your computer.
โจ What's New in v0.5.0
- ๐ Model Swarm - PSO-based collaborative inference with multiple small models
- ๐ฎ Proactive Intelligence - Anticipatory suggestions based on context and habits
- ๐ 12+ New Models - Phi-4-mini, SmolLM2, Qwen3-4B, TinyLlama, BitNet 2B
- โก Ultra-Efficient - Run on <2GB RAM with TinyLlama, Qwen3-0.6B
- ๐ฏ Smart Routing - Mixture-of-Experts automatically picks best model per task
- ๐ Speculative Decoding - 2.5x speedup with draft+verify pairs
- ๐ Hardware Profiles - Auto-configure based on your available resources
Previously Added (v0.4.0)
- ๐ผ๏ธ Vision Module - CLIP/BLIP image understanding, VQA, OCR
- ๐ค Voice Module - Whisper transcription, speaker diarization, TTS
- ๐ฆ Docker Support - One-command deployment with GPU support
- ๐ฅ Team Collaboration - Shared memory pools, multi-user sessions
๐ Model Swarm: Collaborative Multi-Model Inference
The Model Swarm system enables multiple small models to work together, achieving better results than any single model:
Swarm Strategies
| Strategy | Description | Best For |
|---|---|---|
| PSO Collaborative | Particle Swarm Optimization guides model selection | Complex tasks |
| Parallel Vote | Run 3+ models, vote on best response | Quality-critical |
| Mixture of Experts | Route to specialist per task type | General use |
| Speculative Ensemble | Fast model drafts, strong model verifies | Speed + quality |
| Fastest First | Start fast, escalate if confidence low | Low latency |
| Confidence Fusion | Weighted combination of outputs | High reliability |
๐๏ธ Architecture & Privacy
Farnsworth runs 100% locally on your machine.
- No Server Costs: You do not need to pay for hosting.
- Your Data: All memories and files stay on your computer.
- How it connects: The Claude Desktop App spawns Farnsworth as a background process using the Model Context Protocol (MCP).
Supported Models (Jan 2025)
| Model | Params | RAM | Strengths |
|---|---|---|---|
| Phi-4-mini-reasoning | 3.8B | 6GB | Rivals o1-mini in math/reasoning |
| Phi-4-mini | 3.8B | 6GB | GPT-3.5 class, 128K context |
| DeepSeek-R1-1.5B | 1.5B | 4GB | o1-style reasoning, MIT license |
| Qwen3-4B | 4B | 5GB | MMLU-Pro 74%, multilingual |
| SmolLM2-1.7B | 1.7B | 3GB | Best quality at size |
| Qwen3-0.6B | 0.6B | 2GB | Ultra-light, 100+ languages |
| TinyLlama-1.1B | 1.1B | 2GB | Fastest, edge devices |
| BitNet-2B | 2B | 1GB | Native 1-bit, 5-7x CPU speedup |
| Gemma-3n-E2B | 2B eff | 4GB | Multimodal (text/image/audio) |
| Phi-4-multimodal | 5.6B | 8GB | Vision + speech + reasoning |
Hardware Profiles
Farnsworth auto-configures based on your hardware:
minimal: # <4GB RAM: TinyLlama, Qwen3-0.6B
cpu_only: # 8GB+ RAM, no GPU: BitNet, SmolLM2
low_vram: # 2-4GB VRAM: DeepSeek-R1, Qwen3-0.6B
medium_vram: # 4-8GB VRAM: Phi-4-mini, Qwen3-4B
high_vram: # 8GB+ VRAM: Full swarm with verification
โก Quick Start
๐ฆ Option 1: One-Line Install (Recommended)
Farnsworth is available on PyPI. This is the easiest way to get started.
pip install farnsworth-ai
Running the Server:
# Start the MCP server
farnsworth-server
# Or customize configuration
farnsworth-server --debug --port 8000
๐ณ Option 2: Docker
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
docker-compose -f docker/docker-compose.yml up -d
๐ ๏ธ Option 3: Source (For Developers)
git clone https://github.com/timowhite88/Farnsworth.git
cd Farnsworth
pip install -r requirements.txt
๐ Configure Claude Code
Add to your Claude Code MCP settings (usually found in claude_desktop_config.json):
For PyPI Install:
{
"mcpServers": {
"farnsworth": {
"command": "farnsworth-server",
"args": [],
"env": {
"FARNSWORTH_LOG_LEVEL": "INFO"
}
}
}
}
๐ Full Installation Guide โ
๐ Key Features
๐ง Advanced Memory System
Claude finally remembers! Multi-tier hierarchical memory:
| Memory Type | Description |
|---|---|
| Working Memory | Current conversation context |
| Episodic Memory | Timeline of interactions, "on this day" recall |
| Semantic Layers | 5-level abstraction hierarchy |
| Knowledge Graph | Entities, relationships, temporal edges |
| Archival Memory | Permanent vector-indexed storage |
| Memory Dreaming | Background consolidation during idle time |
๐ค Agent Swarm (11 Specialists)
Claude can delegate tasks to AI agents:
| Core Agents | Description |
|---|---|
| Code Agent | Programming, debugging, code review |
| Reasoning Agent | Logic, math, step-by-step analysis |
| Research Agent | Information gathering, summarization |
| Creative Agent | Writing, brainstorming, ideation |
| Advanced Agents (v0.3+) | Description |
|---|---|
| Planner Agent | Task decomposition, dependency tracking |
| Critic Agent | Quality scoring, iterative refinement |
| Web Agent | Intelligent browsing, form filling |
| FileSystem Agent | Project understanding, smart search |
| Collaboration (v0.3+) | Description |
|---|---|
| Agent Debates | Multi-perspective synthesis |
| Specialization Learning | Skill development, task routing |
| Hierarchical Teams | Manager coordination, load balancing |
๐ผ๏ธ Vision Understanding (v0.4+)
See and understand images:
- CLIP Integration - Zero-shot classification, image embeddings
- BLIP Integration - Captioning, visual question answering
- OCR - Extract text from images (EasyOCR)
- Scene Graphs - Extract objects and relationships
- Image Similarity - Compare and search images
๐ค Voice Interaction (v0.4+)
Hear and speak:
- Whisper Transcription - Real-time and batch processing
- Speaker Diarization - Identify different speakers
- Text-to-Speech - Multiple voice options
- Voice Commands - Natural language control
- Continuous Listening - Hands-free mode
๐ฅ Team Collaboration (v0.4+)
Work together with shared AI:
- Shared Memory Pools - Team knowledge bases
- Multi-User Support - Individual profiles and preferences
- Permission System - Role-based access control
- Collaborative Sessions - Real-time multi-user interaction
- Audit Logging - Compliance-ready access trails
๐ Self-Evolution
Farnsworth learns from your feedback and improves automatically:
- Fitness Tracking - Monitors task success, efficiency, satisfaction
- Genetic Optimization - Evolves better configurations over time
- User Avatar - Builds a model of your preferences
- LoRA Evolution - Adapts model weights to your usage
๐ Smart Retrieval (RAG 2.0)
Self-refining retrieval that gets better at finding relevant information:
- Hybrid Search - Semantic + BM25 keyword search
- Query Understanding - Intent classification, expansion
- Multi-hop Retrieval - Complex question answering
- Context Compression - Token-efficient memory injection
- Source Attribution - Confidence scoring
๐ ๏ธ Architecture
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Claude Code โ
โ (Your AI Programming Partner) โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ MCP Protocol
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Farnsworth MCP Server โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Memory โ โ Agent โ โEvolution โ โMultimodalโ โ
โ โ Tools โ โ Tools โ โ Tools โ โ Tools โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ Memory โ โ Agent โ โ Multimodal โ
โ System โ โ Swarm โ โ Engine โ
โ โ โ โ โ โ
โ โข Episodic โ โ โข Planner โ โ โข Vision โ
โ โข Semantic โ โ โข Critic โ โ (CLIP/BLIP)โ
โ โข Knowledge โ โ โข Web โ โ โข Voice โ
โ Graph v2 โ โ โข FileSystem โ โ (Whisper) โ
โ โข Archival โ โ โข Debates โ โ โข OCR โ
โ โข Sharing โ โ โข Teams โ โ โข TTS โ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ โ โ
โผ โผ โผ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ Evolution โ โCollaboration โ โ Storage โ
โ Engine โ โ System โ โ Backends โ
โ โ โ โ โ โ
โ โข Genetic โ โ โข Multi-User โ โ โข FAISS โ
โ Optimizer โ โ โข Shared โ โ โข ChromaDB โ
โ โข Fitness โ โ Memory โ โ โข Redis โ
โ Tracker โ โ โข Sessions โ โ โข SQLite โ
โ โข LoRA โ โ โข Permissionsโ โ โ
โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ
โ โ โ
โโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโ
โ
โผ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Model Swarm (v0.5+) โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ PSO Collaborative Engine โ โ
โ โ โข Particle positions = model configs โ โ
โ โ โข Velocity = adaptation direction โ โ
โ โ โข Global/personal best tracking โ โ
โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ
โ โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โ Phi-4 โ โDeepSeek โ โ Qwen3 โ โ SmolLM2 โ โ
โ โ mini โ โ R1-1.5B โ โ 0.6B/4B โ โ 1.7B โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โ โTinyLlama โ โ BitNet โ โ Gemma โ โ Cascade โ โ
โ โ 1.1B โ โ 2B(1-bit)โ โ 3n-E2B โ โ (hybrid) โ โ
โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ง Tools Available to Claude
Once connected, Claude has access to these tools:
| Tool | Description |
|---|---|
farnsworth_remember(content, tags) |
Store information in long-term memory |
farnsworth_recall(query, limit) |
Search and retrieve relevant memories |
farnsworth_delegate(task, agent_type) |
Delegate to specialist agent |
farnsworth_evolve(feedback) |
Provide feedback for system improvement |
farnsworth_status() |
Get system health and statistics |
farnsworth_vision(image, task) |
Analyze images (caption, VQA, OCR) |
farnsworth_voice(audio, task) |
Process audio (transcribe, diarize) |
farnsworth_collaborate(action, ...) |
Team collaboration operations |
farnsworth_swarm(prompt, strategy) |
NEW: Multi-model collaborative inference |
๐ฆ Docker Deployment
Multiple deployment profiles available:
# Basic deployment
docker-compose -f docker/docker-compose.yml up -d
# With GPU support
docker-compose -f docker/docker-compose.yml --profile gpu up -d
# With Ollama + ChromaDB
docker-compose -f docker/docker-compose.yml --profile ollama --profile chromadb up -d
# Development mode (hot reload + debugger)
docker-compose -f docker/docker-compose.yml --profile dev up -d
See docker/docker-compose.yml for all options.
๐ Dashboard
Farnsworth includes a Streamlit dashboard for visualization:
python main.py --ui
# Or with Docker:
docker-compose -f docker/docker-compose.yml --profile ui-only up -d
<details> <summary>๐ธ Dashboard Features</summary>
- Memory Browser - Search and explore all stored memories
- Episodic Timeline - Visual history of interactions
- Knowledge Graph - 3D entity relationships
- Agent Monitor - Active agents and task history
- Evolution Dashboard - Fitness metrics and improvement trends
- Team Collaboration - Shared pools and active sessions
- Model Swarm Monitor - PSO state, model performance, strategy stats
</details>
๐ Roadmap
See ROADMAP.md for detailed plans.
Completed โ
- v0.1.0 - Core memory, agents, evolution
- v0.2.0 - Enhanced memory (episodic, semantic, sharing)
- v0.3.0 - Advanced agents (planner, critic, web, filesystem, debates, teams)
- v0.4.0 - Multimodal (vision, voice) + collaboration + Docker
- v0.5.0 - Model Swarm + 12 new models + hardware profiles
Coming Next
- ๐ฌ Video understanding and summarization
- ๐ Encryption at rest (AES-256)
- โ๏ธ Cloud deployment templates (AWS, Azure, GCP)
- ๐ Performance optimization (<100ms recall)
๐ก Why "Farnsworth"?
Named after Professor Hubert J. Farnsworth from Futurama - a brilliant inventor who created countless gadgets and whose catchphrase "Good news, everyone!" perfectly captures what we hope you'll feel when using this tool with Claude.
๐ Requirements
| Minimum | Recommended | With Full Swarm |
|---|---|---|
| Python 3.10+ | Python 3.11+ | Python 3.11+ |
| 4GB RAM | 8GB RAM | 16GB RAM |
| 2-core CPU | 4-core CPU | 8-core CPU |
| 5GB storage | 20GB storage | 50GB storage |
| - | 4GB VRAM | 8GB+ VRAM |
Supported Platforms: Windows 10+, macOS 11+, Linux
Optional Dependencies:
ollama- Local LLM inference (recommended)llama-cpp-python- Direct GGUF inferencetorch- GPU accelerationtransformers- Vision/Voice modelsplaywright- Web browsing agentwhisper- Voice transcription
๐ License
Farnsworth is dual-licensed:
| Use Case | License |
|---|---|
| Personal / Educational / Non-commercial | FREE |
| Commercial (revenue > $1M or enterprise) | Commercial License Required |
See LICENSE for details. For commercial licensing, contact via GitHub.
๐ค Contributing
We welcome contributions! See CONTRIBUTING.md for guidelines.
Priority Areas:
- Video understanding module
- Cloud deployment templates
- Performance benchmarks
- Additional model integrations
- Documentation improvements
๐ Documentation
- ๐ User Guide - Complete usage documentation
- ๐บ๏ธ Roadmap - Future plans and features
- ๐ค Contributing - How to contribute
- ๐ License - License terms
- ๐ณ Docker Guide - Container deployment
- ๐ Model Configs - Supported models and swarm configs
๐ Research References
Model Swarm implementation inspired by:
- Model Swarms: Collaborative Search via Swarm Intelligence
- Harnessing Multiple LLMs: Survey on LLM Ensemble
- Small Language Models - MIT Tech Review
โญ Star History
If Farnsworth helps you, consider giving it a star! โญ
<div align="center">
Built with โค๏ธ for the Claude community
"Good news, everyone!" - Professor Farnsworth
Report Bug โข Request Feature โข Get Commercial License
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.