Factifai MCP Server

Factifai MCP Server

Integrates Factifai testing capabilities with MCP-compatible AI tools, enabling asynchronous creation and retrieval of automated tests using AI models from OpenAI or AWS Bedrock.

Category
Visit Server

README

Factifai MCP Server

License: MIT npm version <img alt="Install in VS Code (npx)" src="https://img.shields.io/badge/VS_Code-VS_Code?style=plastic&label=Install&color=0098FF"> <img alt="Install in VS Code Insiders (npx)" src="https://img.shields.io/badge/VS_Code_Insiders-VS_Code_Insiders?style=plastic&label=Install&color=24bfa5"> <img alt="Install in Cursor (npx)" src="https://img.shields.io/badge/Cursor-Cursor?style=plastic&label=Install&color=1A1A1A">

<p> <img style="margin-right:18px;" src="assets/img/hai.png" alt="Hai Build" /> <img style="margin-right:18px;" src="assets/img/amazon-q.png" alt="Amazon Q" /> <img style="margin-right:18px;" src="assets/img/vsc.png" alt="VS Code" /> <img style="margin-right:18px;" src="assets/img/cursor.png" alt="Cursor" /> <img style="margin-right:18px;" src="assets/img/windsurf.png" alt="Windsurf" /> <img style="margin-right:18px;" src="assets/img/zed.png" alt="Zed" /> </p>

A Model Context Protocol (MCP) server for Factifai integration with any MCP-compatible AI tool. This server is designed to be tool-agnostic, meaning it can be used with any tool that supports the MCP protocol. This server currently exposes tools to create tests asynchronously and get the result of the test.

Table of Contents

Requirements

  • Node.js >= 16.0.0
  • Hai Build, Cursor, Windsurf, Claude Desktop or any MCP Client

Installation

# Latest version
npx --yes @presidio-dev/factifai-mcp-server@latest

# Specific version
npx --yes @presidio-dev/factifai-mcp-server@1.2.3

We recommend npx to install the server, but you can use any node package manager of your preference such as yarn, pnpm, bun, etc.

Installation Note

⚠️ Important: The first time you install Factifai MCP Server, it will automatically download and install browser dependencies using Playwright. This process may take several minutes depending on your internet connection and system specifications.

The installation includes:

  • Downloading browser binaries (Chromium, Firefox, WebKit)
  • Installing browser dependencies
  • Setting up the necessary environment

This happens only once, and subsequent runs will be much faster as the browsers are already installed.

Pre-Installation Tip

⚠️ Recommended for First-Time Installation: Many MCP clients have strict timeout limits for server startup. The browser installation process during first-time setup may exceed these timeouts, causing the installation to fail or appear non-responsive.

To avoid timeout issues, we strongly recommend pre-installing Playwright browsers manually:

# Step 1: Install Playwright browsers manually before installing the MCP server
npx playwright install --with-deps

# Step 2: Then install the MCP server (will be much faster and avoid timeouts)
npx --yes @presidio-dev/factifai-mcp-server@latest

This pre-installation step:

  1. Ensures browsers are downloaded without MCP client timeout constraints
  2. Significantly speeds up the MCP server's first-time installation
  3. Prevents installation failures due to timeout issues in your IDE or MCP client

Configuration

with npx with latest version:

{
	"factifai": {
		"command": "npx",
		"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
		"env": {
			"MODEL_PROVIDER": "bedrock|openai",
			"OPENAI_API_KEY": "<your-openai-api-key>",
			"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
			"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
			"AWS_DEFAULT_REGION": "<your-aws-region>"
		},
		"disabled": false,
		"autoApprove": []
	}
}

with npx with specific version:

{
	"factifai": {
		"command": "npx",
		"args": ["--yes", "@presidio-dev/factifai-mcp-server@1.2.3"],
		"env": {
			"MODEL_PROVIDER": "bedrock|openai",
			"OPENAI_API_KEY": "<your-openai-api-key>",
			"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
			"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
			"AWS_DEFAULT_REGION": "<your-aws-region>"
		},
		"disabled": false,
		"autoApprove": []
	}
}

Environment Variables

Variable Name Description
MODEL_PROVIDER The model provider to use. (bedrock or openai)
OPENAI_API_KEY The API key for the OpenAI model provider
AWS_ACCESS_KEY_ID The AWS access key ID for the Bedrock model provider
AWS_SECRET_ACCESS_KEY The AWS secret access key for the Bedrock model provider
AWS_DEFAULT_REGION The AWS default region for the Bedrock model provider

Model Provider Configuration Examples

Bedrock Configuration Example

{
	"factifai": {
		"command": "npx",
		"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
		"env": {
			"MODEL_PROVIDER": "bedrock",
			"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
			"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
			"AWS_DEFAULT_REGION": "<your-aws-region>"
		},
		"disabled": false,
		"autoApprove": []
	}
}

OpenAI Configuration Example

{
	"factifai": {
		"command": "npx",
		"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
		"env": {
			"MODEL_PROVIDER": "openai",
			"OPENAI_API_KEY": "<your-openai-api-key>"
		},
		"disabled": false,
		"autoApprove": []
	}
}

Factifai MCP integration with popular IDE and extension

See the setup instructions for each

<details>

<summary><b>Install in Hai Build</b></summary>

Add the following to your hai_mcp_settings.json file. To open this file from Hai Build, click the "MCP Servers" icon, select the "Installed" tab, and then click "Configure MCP Servers".

See the Hai Build MCP documentation for more info.

{
	"mcpServers": {
		"factifai": {
			"command": "npx",
			"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
			"env": {
				"MODEL_PROVIDER": "bedrock|openai",
				"OPENAI_API_KEY": "<your-openai-api-key>",
				"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
				"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
				"AWS_DEFAULT_REGION": "<your-aws-region>"
			}
		}
	}
}

</details>

<details>

<summary><b>Install in Amazon Q Developer</b></summary>

Add the following to your Amazon Q Developer configuration file. See MCP configuration for Q Developer in the IDE for more details.

The configuration file can be stored globally at ~/.aws/amazonq/mcp.json to be available across all your projects, or locally within your project at .amazonq/mcp.json.

{
	"mcpServers": {
		"factifai": {
			"command": "npx",
			"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
			"env": {
				"MODEL_PROVIDER": "bedrock|openai",
				"OPENAI_API_KEY": "<your-openai-api-key>",
				"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
				"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
				"AWS_DEFAULT_REGION": "<your-aws-region>"
			}
		}
	}
}

</details>

<details>

<summary><b>Install in VS Code (Copilot)</b></summary>

<img alt="Install in VS Code (npx)" src="https://img.shields.io/badge/VS_Code-VS_Code?style=plastic&label=Install&color=0098FF"> <img alt="Install in VS Code Insiders (npx)" src="https://img.shields.io/badge/VS_Code_Insiders-VS_Code_Insiders?style=plastic&label=Install&color=24bfa5">

First, enable MCP support in VS Code by opening Settings (Ctrl+,), searching for mcp.enabled, and checking the box.

Then, add the following configuration to your user or workspace settings.json file. See the VS Code MCP documentation for more info.

"mcp": {
  "servers": {
    "factifai": {
      "type": "stdio",
      "command": "npx",
      "args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
      "env": {
        "MODEL_PROVIDER": "bedrock|openai",
        "OPENAI_API_KEY": "<your-openai-api-key>",
        "AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
        "AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
        "AWS_DEFAULT_REGION": "<your-aws-region>"
      }
    }
  }
}

</details>

<details> <summary><b>Install in Cursor</b></summary>

The easiest way to install is with the one-click installation button below.

<img alt="Install in Cursor (npx)" src="https://img.shields.io/badge/Cursor-Cursor?style=plastic&label=Install&color=1A1A1A">

Alternatively, you can manually configure the server by adding the following to your mcp.json file. This file can be located globally at ~/.cursor/mcp.json or within a specific project at .cursor/mcp.json. See the Cursor MCP documentation for more information.

{
	"mcpServers": {
		"factifai": {
			"command": "npx",
			"args": ["--yes", "@presidio-dev/factifai-mcp-server@latest"],
			"env": {
				"MODEL_PROVIDER": "bedrock|openai",
				"OPENAI_API_KEY": "<your-openai-api-key>",
				"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
				"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
				"AWS_DEFAULT_REGION": "<your-aws-region>"
			}
		}
	}
}

</details>

<details> <summary><b>Install in Windsurf</b></summary>

Add the following to your ~/.codeium/windsurf/mcp_config.json file. See the Windsurf MCP documentation for more information.

{
	"mcpServers": {
		"factifai": {
			"command": "npx",
			"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
			"env": {
				"MODEL_PROVIDER": "bedrock|openai",
				"OPENAI_API_KEY": "<your-openai-api-key>",
				"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
				"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
				"AWS_DEFAULT_REGION": "<your-aws-region>"
			}
		}
	}
}

</details>

<details> <summary><b>Install in Zed</b></summary>

You can add the Factifai MCP server in Zed by editing your settings.json file (accessible via the zed: settings action) or by using the Agent Panel's configuration UI (agent: open configuration). See the Zed MCP documentation for more information.

Add the following to your settings.json:

{
	"context_servers": {
		"factifai": {
			"command": {
				"path": "npx",
				"args": ["-y", "@presidio-dev/factifai-mcp-server@latest"],
				"env": {
					"MODEL_PROVIDER": "bedrock|openai",
					"OPENAI_API_KEY": "<your-openai-api-key>",
					"AWS_ACCESS_KEY_ID": "<your-aws-access-key-id>",
					"AWS_SECRET_ACCESS_KEY": "<your-aws-secret-access-key>",
					"AWS_DEFAULT_REGION": "<your-aws-region>"
				}
			}
		}
	}
}

</details>

Available Tools

Tool Name Description
testWithFactifai Start a test with Factifai
getFactifaiSessionResult Get test result
listFactifaiSessions List tests

Contributing

We welcome contributions to the Factifai MCP Server! Please see our Contributing Guide for more information on how to get started.

Security

For information about our security policy and how to report security vulnerabilities, please see our Security Policy.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured