ExpressJS MCP

ExpressJS MCP

Exposes Express.js API endpoints as MCP tools, preserving existing schemas and authentication behavior. Supports streaming responses and can be mounted directly to existing Express apps or run as a standalone gateway.

Category
Visit Server

README

express_mcp

Expose your Express endpoints as MCP tools (mount to your app or run a standalone HTTP gateway), preserving schemas and auth behavior.

  • Inspiration: FastAPI-MCP — https://github.com/tadata-org/fastapi_mcp

Features

  • Zero Configuration: Works out-of-the-box with existing Express apps
  • Schema Preservation: Supports OpenAPI v3 and zod annotations
  • Auth Integration: Reuses existing Express middleware (no bypass)
  • Flexible Deployment: Mount to same app or run standalone
  • In-Process Efficiency: Direct middleware execution (no HTTP overhead)
  • 🚀 Streaming Support: Handle Server-Sent Events, file downloads, and real-time data
  • 📦 NPX/Bunx Commands: Easy CLI access with npx expressjs-mcp and bunx expressjs-mcp

Installation

Option 1: Install from npm (Recommended)

# Install globally or locally
npm install -g expressjs-mcp
# or with pnpm
pnpm add -g expressjs-mcp

# Use with npx (no installation required)
npx expressjs-mcp init

Option 2: Clone and build locally

git clone https://github.com/bowen31337/expressjs_mcp.git
cd expressjs_mcp
pnpm install && pnpm build

Quick Start

Option 1: CLI Commands (Recommended)

# Initialize in your project (works with npm package or locally built)
npx expressjs-mcp init
# or if installed locally: node bin/express-mcp.cjs init

# Start your server
node server.js

# Test connection
npx expressjs-mcp test --url http://localhost:3000/mcp
# or if installed locally: node bin/express-mcp.cjs test --url http://localhost:3000/mcp

Option 2: Manual Setup

npm install expressjs-mcp
# or
pnpm add expressjs-mcp

Native MCP Server (New!)

Express-MCP now includes a native MCP server using the official @modelcontextprotocol/sdk:

# Connect to your Express app
npx expressjs-mcp --url http://localhost:3000/mcp

# With debug logging
npx expressjs-mcp --debug
import express from 'express';
import { ExpressMCP } from 'expressjs-mcp';

const app = express();
app.use(express.json());

app.get('/hello', (_req, res) => res.json({ message: 'world' }));

const mcp = new ExpressMCP(app, { mountPath: '/mcp' });
await mcp.init();
mcp.mount('/mcp');

MCP Client Configuration

Once your Express server is running with MCP endpoints, you need to configure your MCP client to connect to it. Here are instructions for popular MCP clients:

For Cursor IDE

  1. Open Cursor Settings:

    • Press Cmd/Ctrl + , to open settings
    • Search for "MCP" or navigate to Extensions > MCP
  2. Add MCP Server Configuration:

    {
      "mcpServers": {
        "expressjs-mcp": {
          "command": "node",
          "args": ["/path/to/your/project/server.js"],
          "env": {
            "NODE_ENV": "production"
          }
        }
      }
    }
    
  3. Alternative: Use Native MCP Server:

    {
      "mcpServers": {
        "expressjs-mcp": {
          "command": "npx",
          "args": ["expressjs-mcp", "--url", "http://localhost:3000/mcp"]
        }
      }
    }
    

For Claude Desktop

  1. Edit Configuration File:

    • Open claude_desktop_config.json in your Claude Desktop settings
    • Location varies by OS:
      • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
      • Windows: %APPDATA%\Claude\claude_desktop_config.json
      • Linux: ~/.config/Claude/claude_desktop_config.json
  2. Add MCP Server:

    {
      "mcpServers": {
        "expressjs-mcp": {
          "command": "node",
          "args": ["/absolute/path/to/your/project/server.js"],
          "env": {
            "NODE_ENV": "production"
          }
        }
      }
    }
    
  3. Restart Claude Desktop after making changes

For Claude Web

  1. Access MCP Settings:

    • Go to claude.ai
    • Click on your profile/settings
    • Look for "MCP Configuration" or "Model Context Protocol"
  2. Add Server Configuration:

    {
      "mcpServers": {
        "expressjs-mcp": {
          "command": "node",
          "args": ["/path/to/your/project/server.js"]
        }
      }
    }
    

For VS Code with MCP Extension

  1. Install MCP Extension:

    • Search for "MCP" in VS Code extensions
    • Install the official MCP extension
  2. Configure in settings.json:

    {
      "mcp.servers": {
        "expressjs-mcp": {
          "command": "node",
          "args": ["/path/to/your/project/server.js"]
        }
      }
    }
    

For Other MCP Clients

Most MCP clients follow a similar configuration pattern:

{
  "mcpServers": {
    "expressjs-mcp": {
      "command": "node",
      "args": ["/path/to/your/project/server.js"],
      "env": {
        "NODE_ENV": "production"
      }
    }
  }
}

Configuration Options

  • command: The command to run (usually node for JavaScript/TypeScript)
  • args: Array of arguments (path to your server file)
  • env: Environment variables (optional)
  • cwd: Working directory (optional)

Testing Your Configuration

  1. Start your Express server:

    node server.js
    
  2. Test MCP endpoints:

    # Check available tools
    curl http://localhost:3000/mcp/tools
    
    # Test a tool invocation
    curl -X POST http://localhost:3000/mcp/invoke \
      -H "Content-Type: application/json" \
      -d '{"toolName": "GET_/hello", "args": {}}'
    
  3. Verify in your MCP client:

    • The MCP client should show available tools
    • You should be able to invoke tools through the client interface

Troubleshooting

Common Issues:

  1. Path Issues: Use absolute paths in your configuration
  2. Permission Issues: Ensure the server file is executable
  3. Port Conflicts: Make sure your Express server is running on the expected port
  4. Environment Variables: Set NODE_ENV=production for better performance

Debug Mode:

# Run with debug logging
NODE_ENV=development node server.js

# Or use the native MCP server with debug
npx expressjs-mcp --url http://localhost:3000/mcp --debug

Check MCP Server Status:

# Test if MCP endpoints are working
curl http://localhost:3000/mcp/tools | jq .

# Check server health
curl http://localhost:3000/health

Streaming Support

Express MCP supports three types of streaming for real-time data:

🌊 1. HTTP Chunked Streaming

app.get('/api/chunked', (req, res) => {
  res.setHeader('Transfer-Encoding', 'chunked');
  res.write('Processing...\n');
  // Stream data in chunks
});

📡 2. Server-Sent Events (SSE)

app.get('/api/sse', (req, res) => {
  res.setHeader('Content-Type', 'text/event-stream');
  res.setHeader('Cache-Control', 'no-cache');
  
  let count = 0;
  const interval = setInterval(() => {
    res.write(`data: ${JSON.stringify({ count: ++count })}\n\n`);
    if (count >= 10) {
      clearInterval(interval);
      res.end();
    }
  }, 1000);
});

📄 3. NDJSON/JSON Lines

app.get('/api/ndjson', (req, res) => {
  res.setHeader('Content-Type', 'application/x-ndjson');
  
  const data = [{ id: 1 }, { id: 2 }];
  data.forEach(item => {
    res.write(JSON.stringify(item) + '\n');
  });
  res.end();
});

Testing All Streaming Types

# HTTP Streaming via MCP
curl -X POST http://localhost:3000/mcp/invoke \
  -H "Content-Type: application/json" \
  -d '{"toolName": "GET /api/stream", "args": {}, "streaming": true}'

# stdio Streaming via MCP Bridge (npm package)
echo '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"GET /api/ndjson","arguments":{"_streaming":true}}}' | \
  npx expressjs-mcp bridge
  
# Test with native MCP server:
npx expressjs-mcp --url http://localhost:3000/mcp --debug

# Direct endpoint testing
curl http://localhost:3000/api/sse        # SSE
curl http://localhost:3000/api/ndjson     # NDJSON
curl http://localhost:3000/api/chunked    # Chunked

Documentation

Development

pnpm install
pnpm test      # Run tests
pnpm build     # Build for production
pnpm lint      # Check code quality

Configuration Options

  • OpenAPI: Provide your OpenAPI v3 spec for rich schemas
  • Schema Annotations: Use zod for per-route type validation
  • Route Filtering: Include/exclude specific endpoints
  • Auth Preservation: Existing middleware runs unchanged
  • Streaming: Automatic detection and handling of streaming responses
  • Timeouts: Configurable request timeouts for long-running operations

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured