Excel MCP Server
An MCP server that provides comprehensive Excel file operations, data analysis, and visualization capabilities for working with various spreadsheet formats like XLSX, CSV, and JSON.
Tools
read_excel
Read an Excel file and return its contents as a string. Args: file_path: Path to the Excel file sheet_name: Name of the sheet to read (only for .xlsx, .xls) nrows: Maximum number of rows to read header: Row to use as header (0-indexed) Returns: String representation of the Excel data
write_excel
Write data to an Excel file. Args: file_path: Path to save the Excel file data: Data in CSV or JSON format sheet_name: Name of the sheet (for Excel files) format: Format of the input data ('csv' or 'json') Returns: Confirmation message
update_excel
Update an existing Excel file with new data. Args: file_path: Path to the Excel file to update data: New data in CSV or JSON format sheet_name: Name of the sheet to update (for Excel files) format: Format of the input data ('csv' or 'json') Returns: Confirmation message
analyze_excel
Perform statistical analysis on Excel data. Args: file_path: Path to the Excel file columns: Comma-separated list of columns to analyze (analyzes all numeric columns if None) sheet_name: Name of the sheet to analyze (for Excel files) Returns: JSON string with statistical analysis
filter_excel
Filter Excel data using a pandas query string. Args: file_path: Path to the Excel file query: Pandas query string (e.g., "Age > 30 and Department == 'Sales'") sheet_name: Name of the sheet to filter (for Excel files) Returns: Filtered data as string
pivot_table
Create a pivot table from Excel data. Args: file_path: Path to the Excel file index: Column to use as the pivot table index columns: Optional column to use as the pivot table columns values: Column to use as the pivot table values aggfunc: Aggregation function ('mean', 'sum', 'count', etc.) sheet_name: Name of the sheet to pivot (for Excel files) Returns: Pivot table as string
export_chart
Create a chart from Excel data and return as an image. Args: file_path: Path to the Excel file x_column: Column to use for x-axis y_column: Column to use for y-axis chart_type: Type of chart ('line', 'bar', 'scatter', 'hist') sheet_name: Name of the sheet to chart (for Excel files) Returns: Chart as image
data_summary
Generate a comprehensive summary of the data in an Excel file. Args: file_path: Path to the Excel file sheet_name: Name of the sheet to summarize (for Excel files) Returns: Comprehensive data summary as string
README
Excel MCP Server
An MCP server that provides comprehensive Excel file management and data analysis capabilities.
Features
-
Excel File Operations
- Read multiple Excel formats (XLSX, XLS, CSV, TSV, JSON)
- Write and update Excel files
- Get file information and sheet names
-
Data Analysis
- Summary statistics and descriptive analysis
- Data quality assessment
- Pivot tables
- Filtering and querying data
-
Visualization
- Generate charts and plots from Excel data
- Create data previews
- Export visualizations as images
Installation
- Create a new Python environment (recommended):
# Using uv (recommended)
uv init excel-mcp-server
cd excel-mcp-server
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Or using pip
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
- Install dependencies:
# Using uv
uv pip install -r requirements.txt
# Or using pip
pip install -r requirements.txt
Integration with Claude Desktop
- Install Claude Desktop
- Open Settings and go to the Developer tab
- Edit
claude_desktop_config.json:
{
"mcpServers": {
"command": "uvx",
"args": [
"mcp-excel-server"
],
"env": {
"PYTHONPATH": "/path/to/your/python"
}
}
}
Available Tools
File Reading
read_excel: Read Excel filesget_excel_info: Get file detailsget_sheet_names: List worksheet names
Data Analysis
analyze_excel: Perform statistical analysisfilter_excel: Filter data by conditionspivot_table: Create pivot tablesdata_summary: Generate comprehensive data summary
Data Visualization
export_chart: Generate charts- Supports line charts, bar charts, scatter plots, histograms
File Operations
write_excel: Write new Excel filesupdate_excel: Update existing Excel files
Available Resources
excel://{file_path}: Get file contentexcel://{file_path}/info: Get file structure informationexcel://{file_path}/preview: Generate data preview image
Prompt Templates
analyze_excel_data: Guided template for Excel data analysiscreate_chart: Help create data visualizationsdata_cleaning: Assist with data cleaning
Usage Examples
- "Analyze my sales_data.xlsx file"
- "Create a bar chart for product_sales.csv"
- "Filter employees over 30 in employees.xlsx"
- "Generate a pivot table of department sales"
Security Considerations
- Read files only from specified paths
- Limit file size
- Prevent accidental file overwriting
- Strictly control data transformation operations
Dependencies
- pandas
- numpy
- matplotlib
- seaborn
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.