ESXi MCP Server

ESXi MCP Server

Mirror of

MCP-Mirror

Virtualization
Visit Server

README

ESXi MCP Server

A VMware ESXi/vCenter management server based on MCP (Model Control Protocol), providing simple REST API interfaces for virtual machine management.

Features

  • Support for ESXi and vCenter Server connections
  • Real-time communication based on SSE (Server-Sent Events)
  • RESTful API interface with JSON-RPC support
  • API key authentication
  • Complete virtual machine lifecycle management
  • Real-time performance monitoring
  • SSL/TLS secure connection support
  • Flexible configuration options (YAML/JSON/Environment Variables)

Core Functions

  • Virtual Machine Management
    • Create VM
    • Clone VM
    • Delete VM
    • Power On/Off operations
    • List all VMs
  • Performance Monitoring
    • CPU usage
    • Memory usage
    • Storage usage
    • Network traffic statistics

Requirements

  • Python 3.7+
  • pyVmomi
  • PyYAML
  • uvicorn
  • mcp-core (Machine Control Protocol core library)

Quick Start

  1. Install dependencies:
pip install pyvmomi pyyaml uvicorn mcp-core
  1. Create configuration file config.yaml:
vcenter_host: "your-vcenter-ip"
vcenter_user: "administrator@vsphere.local"
vcenter_password: "your-password"
datacenter: "your-datacenter"        # Optional
cluster: "your-cluster"              # Optional
datastore: "your-datastore"          # Optional
network: "VM Network"                # Optional
insecure: true                       # Skip SSL certificate verification
api_key: "your-api-key"             # API access key
log_file: "./logs/vmware_mcp.log"   # Log file path
log_level: "INFO"                    # Log level
  1. Run the server:
python server.py -c config.yaml

API Interface

Authentication

All privileged operations require authentication first:

POST /sse/messages
Authorization: Bearer your-api-key

Main Tool Interfaces

  1. Create VM
{
    "name": "vm-name",
    "cpu": 2,
    "memory": 4096,
    "datastore": "datastore-name",
    "network": "network-name"
}
  1. Clone VM
{
    "template_name": "source-vm",
    "new_name": "new-vm-name"
}
  1. Delete VM
{
    "name": "vm-name"
}
  1. Power Operations
{
    "name": "vm-name"
}

Resource Monitoring Interface

Get VM performance data:

GET vmstats://{vm_name}

Configuration

Parameter Description Required Default
vcenter_host vCenter/ESXi server address Yes -
vcenter_user Login username Yes -
vcenter_password Login password Yes -
datacenter Datacenter name No Auto-select first
cluster Cluster name No Auto-select first
datastore Storage name No Auto-select largest available
network Network name No VM Network
insecure Skip SSL verification No false
api_key API access key No -
log_file Log file path No Console output
log_level Log level No INFO

Environment Variables

All configuration items support environment variable settings, following these naming rules:

  • VCENTER_HOST
  • VCENTER_USER
  • VCENTER_PASSWORD
  • VCENTER_DATACENTER
  • VCENTER_CLUSTER
  • VCENTER_DATASTORE
  • VCENTER_NETWORK
  • VCENTER_INSECURE
  • MCP_API_KEY
  • MCP_LOG_FILE
  • MCP_LOG_LEVEL

Security Recommendations

  1. Production Environment:

    • Use valid SSL certificates
    • Enable API key authentication
    • Set appropriate log levels
    • Restrict API access scope
  2. Testing Environment:

    • Set insecure: true to skip SSL verification
    • Use more detailed log level (DEBUG)

License

MIT License

Contributing

Issues and Pull Requests are welcome!

Changelog

v0.0.1

  • Initial release
  • Basic VM management functionality
  • SSE communication support
  • API key authentication
  • Performance monitoring

Author

Bright8192

Acknowledgments

  • VMware pyvmomi team
  • MCP Protocol development team

Recommended Servers

Brev

Brev

Run, build, train, and deploy ML models on the cloud.

Official
Local
Python
metoro-mcp-server

metoro-mcp-server

Query and interact with kubernetes environments monitored by Metoro. Look at APM, metrics, traces, profiling information with LLMs.

Official
Local
Go
MCP2Lambda

MCP2Lambda

Enables AI models to interact with AWS Lambda functions via the MCP protocol, allowing access to private resources, real-time data, and custom computation in a secure environment.

Official
Python
MCP Code Executor

MCP Code Executor

Allows LLMs to execute Python code in a specified Conda environment, enabling access to necessary libraries and dependencies for efficient code execution.

Local
JavaScript
Meta MCP Server

Meta MCP Server

A tool that dynamically generates and configures MCP servers by automatically creating necessary directories and files according to user specifications.

Local
JavaScript
docker-mcp

docker-mcp

A powerful Model Context Protocol (MCP) server for Docker operations, enabling seamless container and compose stack management through Claude AI.

Local
Python
MCP Server Modal

MCP Server Modal

An MCP server that allows users to deploy Python scripts to Modal directly from Claude, providing a link to the deployed application that can be shared with others.

Local
Python
k8s-interactive-mcp

k8s-interactive-mcp

A MCP server that can run Kubernetes commands with a given kubeconfig path and provide interpretation of the commands.

Local
JavaScript
mcp-server-kubernetes

mcp-server-kubernetes

TypeScript implementation of Kubernetes cluster operations for pods, deployments, services.

Local
JavaScript
Docker MCP Server

Docker MCP Server

Facilitates isolated code execution within Docker containers, enabling secure multi-language script execution and integration with language models like Claude via the Model Context Protocol.

Local
Python