EntityIdentification

EntityIdentification

MCP (Model Context Protocol) server for identifying whether two sets of data are from the same entity. 识别两组数据是否来自同一主体的MCP服务器

u3588064

Research & Data
Visit Server

README

EntityIdentification

Identify whether two sets of data are from the same entity. 识别两组数据是否来自同一主体

This is a MCP (Model Context Protocol) server. 这是一个支持MCP协议的服务器。

Data Comparison Tool

This tool provides a comprehensive way to compare two sets of data, evaluating both exact and semantic equality of their values. It leverages text normalization and a language model to determine if the data originates from the same entity.

Features

  • Text Normalization: Converts text to lowercase, removes punctuation, and normalizes whitespace.
  • Value Comparison: Compares values directly and semantically (ignoring order for lists).
  • JSON Traversal: Iterates through each key in the JSON objects and compares corresponding values.
  • Language Model Integration: Uses a generative language model to assess semantic similarity and provide a final judgment on whether the data comes from the same entity.

Installation

To use this tool, ensure you have the necessary dependencies installed. You can install them using pip:

pip install genai

Usage

Functions

  1. normalize_text(text):

    • Normalizes the input text by converting it to lowercase, removing punctuation, and normalizing whitespace.
  2. compare_values(val1, val2):

    • Compares two values both exactly and semantically.
    • If the values are lists, it ignores the order of elements for semantic comparison.
  3. compare_json(json1, json2):

    • Compares two JSON objects key by key.
    • Uses compare_values to evaluate each key's values.
    • Integrates a language model to assess semantic similarity and provides a final judgment.

Example

import json
import genai
import re

# Define your JSON objects
json1 = {
    "name": "John Doe",
    "address": "123 Main St, Anytown, USA",
    "hobbies": ["reading", "hiking", "coding"]
}

json2 = {
    "name": "john doe",
    "address": "123 Main Street, Anytown, USA",
    "hobbies": ["coding", "hiking", "reading"]
}

# Compare the JSON objects
comparison_results = compare_json(json1, json2)

# Generate final matching result
model1 = genai.GenerativeModel("gemini-2.0-flash-thinking-exp")
result_matching = model1.generate_content("综合这些信息,你认为可以判断两个数据来自同一主体吗?"+json.dumps(comparison_results, ensure_ascii=False, indent=4))
print(result_matching.text)

Contributing

Contributions are welcome! Please open an issue or submit a pull request.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Contact

If you have any questions or suggestions, please contact me:

Wechat qrcode_for_gh_643efb7db5bc_344(1)

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python