Enterprise Code Search MCP Server
Enables semantic code search across local projects and Git repositories using AI embeddings with ChromaDB. Supports both OpenAI and local Ollama models for private, enterprise-ready code analysis and similar code discovery.
README
Enterprise Code Search MCP Server
A powerful Model Context Protocol (MCP) server for semantic code search with shared vector database. Supports both OpenAI and Ollama for embeddings, and can index local projects or Git repositories.
🚀 Features
- Semantic code search using AI embeddings
- Dual provider support: OpenAI or Ollama (local, private)
- Flexible indexing: Local projects or Git repositories
- Shared vector database with ChromaDB
- Multi-project management: Handle multiple projects simultaneously
- Automatic project structure analysis
- Similar code search based on code snippets
- Enterprise-ready: Private, secure, self-hosted
📋 Requirements
- Node.js 18+
- Docker and Docker Compose
- Git (for repository indexing)
🛠️ Quick Start
1. Clone the repository
git clone https://github.com/your-username/semantic-context-mcp.git
cd semantic-context-mcp
2. Install dependencies
npm install
3. Configure environment
cp .env.example .env
# Edit .env with your configuration
4. Start services
# Start ChromaDB and Ollama
docker-compose up -d
# Wait for Ollama to download models
docker-compose logs -f ollama-setup
5. Build and run
npm run build
npm start
⚙️ Configuration
Using Ollama (Recommended for Enterprise)
# .env
EMBEDDING_PROVIDER=ollama
OLLAMA_HOST=http://localhost:11434
OLLAMA_MODEL=nomic-embed-text
CHROMA_HOST=localhost
CHROMA_PORT=8000
Using OpenAI
# .env
EMBEDDING_PROVIDER=openai
OPENAI_API_KEY=your-api-key
OPENAI_MODEL=text-embedding-3-small
🔧 Claude Desktop Integration
To use this MCP server with Claude Desktop, add to your claude_desktop_config.json:
{
"mcpServers": {
"enterprise-code-search": {
"command": "node",
"args": ["/path/to/semantic-context-mcp/dist/index.js"],
"env": {
"EMBEDDING_PROVIDER": "ollama",
"OLLAMA_HOST": "http://localhost:11434",
"OLLAMA_MODEL": "nomic-embed-text",
"CHROMA_HOST": "localhost",
"CHROMA_PORT": "8000",
"COMPANY_NAME": "YourCompany"
}
}
}
}
🎯 Usage Examples
1. Index a local project
Index my local project at /home/user/my-app with the name "frontend-app"
2. Search in code
Search for "main application function" in all indexed projects
3. Find similar code
Find code similar to:
```python
def authenticate_user(username, password):
return check_credentials(username, password)
4. Analyze project structure
Analyze the structure of project "frontend-app"
🛠️ Available Tools
| Tool | Description |
|---|---|
index_local_project |
Index a local directory |
search_codebase |
Semantic search in code |
list_indexed_projects |
List all indexed projects |
get_embedding_provider_info |
Get embedding provider information |
📊 Example Queries
Functional searches
- "Where is the authentication logic?"
- "Functions that handle database operations"
- "Environment variable configuration"
- "Unit tests for the API"
Code analysis
- "What design patterns are used?"
- "Most complex functions in the project"
- "Error handling in the code"
Technology-specific search
- "Code using React hooks"
- "PostgreSQL queries"
- "Docker configuration"
🔧 Advanced Configuration
Recommended Ollama Models
# For code embeddings
ollama pull nomic-embed-text # Best for code (384 dims)
ollama pull all-minilm # Lightweight alternative (384 dims)
ollama pull mxbai-embed-large # Higher precision (1024 dims)
File Patterns
The server supports extensive file type recognition including:
- Programming Languages: Python, JavaScript/TypeScript, Java, C/C++, Go, Rust, PHP, Ruby, Swift, Kotlin, Scala, and more
- Web Technologies: HTML, CSS, SCSS, Vue, Svelte
- Configuration: JSON, YAML, TOML, Docker, Terraform
- Documentation: Markdown, reStructuredText, AsciiDoc
- Database: SQL files
Performance Tuning
# Maximum chunk size (characters)
MAX_CHUNK_SIZE=1500
# Maximum file size (KB)
MAX_FILE_SIZE=500
# Batch size for indexing
BATCH_SIZE=100
🏢 Enterprise Deployment
Option 1: Dedicated Server
# On enterprise server
docker-compose up -d
Option 2: Network Deployment
# Configure for network access
CHROMA_HOST=192.168.1.100
OLLAMA_HOST=http://192.168.1.100:11434
🔒 Security Considerations
Key Benefits
- Private Data: Ollama keeps everything local
- No External APIs: When using Ollama, no data leaves your network
- Self-hosted: Full control over your code and embeddings
- Isolated Environment: Docker containers provide isolation
Security Best Practices
# Restrict ChromaDB access
CHROMA_SERVER_HOST=127.0.0.1 # Localhost only
# Use HTTPS for production
OLLAMA_HOST=https://ollama.company.com
📈 Monitoring & Troubleshooting
Useful Logs
# View indexing logs
docker-compose logs -f enterprise-mcp-server
# ChromaDB performance
docker-compose logs -f chromadb
# Monitor Ollama
curl http://localhost:11434/api/tags
Common Issues
Ollama not responding:
curl http://localhost:11434/api/tags
# If it fails: docker-compose restart ollama
ChromaDB slow:
# Check disk space
docker system df
# Clean if necessary
docker system prune
Poor embedding quality:
- Try different model:
all-minilmvsnomic-embed-text - Adjust chunk size
- Verify source file quality
🤝 Collaborative Workflow
Typical Enterprise Workflow
- DevOps indexes main projects
- Developers search code using Claude
- Automatic updates via CI/CD
- Code analysis for code reviews
Best Practices
- Index after important merges
- Use descriptive project names
- Maintain project-specific search filters
- Document naming conventions
🛠️ Development
Project Structure
src/
├── index.ts # Main MCP server
└── http-server.ts # HTTP server variant
scripts/ # Setup and utility scripts
docker-compose.yml # Service orchestration
package.json # Dependencies and scripts
Available Scripts
npm run build # Compile TypeScript
npm run dev # Development mode
npm run start # Production mode
npm run clean # Clean build directory
📚 API Reference
The MCP server implements the standard Model Context Protocol with these specific tools:
- index_local_project: Index local directories with configurable file patterns
- search_codebase: Semantic search with project filtering and similarity scoring
- list_indexed_projects: Enumerate all indexed projects with metadata
- get_embedding_provider_info: Get current provider status and configuration
Each tool includes detailed JSON schema with examples and validation.
🤖 Recommended AI Models
For embeddings (Ollama)
nomic-embed-text: Optimized for codeall-minilm: Balanced, fastmxbai-embed-large: High precision
For embeddings (OpenAI)
text-embedding-3-small: Cost-effectivetext-embedding-3-large: Higher precision
🐳 Docker Support
The project includes a complete Docker setup:
- ChromaDB: Vector database for embeddings
- Ollama: Local embedding generation
- PostgreSQL: Optional metadata storage
All services are orchestrated with Docker Compose for easy deployment.
☕ Support
If this project helps you with your development workflow, consider supporting it:
📄 License
MIT License - see LICENSE file for details.
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the project
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
📞 Support & Issues
- 📧 Issues: GitHub Issues
- 💬 Discussions: GitHub Discussions
- ☕ Support: Buy Me a Coffee
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
