EnriWeb
An MCP server that provides web search and URL fetching capabilities by delegating execution to an EnriProxy server. It enables AI agents to perform structured web searches and retrieve content with support for filtering, recency limits, and pagination.
README
EnriWeb
EnriWeb is a Model Context Protocol (MCP) server over stdio that exposes web search and URL fetching tools by delegating execution to EnriProxy.
If your MCP client can call MCP tools, it can do web search / fetch in a consistent way without implementing provider-specific scraping logic.
What this project is
- An MCP server process your MCP host launches (OpenCode, Claude Code, Codex, etc.)
- A thin client for EnriProxy (input validation + structured output)
Requirements
- Node.js
>= 22(recommended: Node 24 LTS) - A reachable EnriProxy server with:
POST /v1/tools/web_searchPOST /v1/tools/web_fetch
- An EnriProxy API key (configured on the EnriProxy side)
Install
# Global install
npm install -g @bedolla/enriweb
# Or run without installing
npx -y @bedolla/enriweb@latest --help
Build
npm install
npm run typecheck
npm run build
Usage
1) Configure your MCP host
EnriWeb runs as an MCP server over stdio. Your MCP host is responsible for launching the process.
Example: global install
{
"EnriWeb": {
"type": "stdio",
"command": "enriweb",
"args": [],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
}
}
}
Example: no install (always uses whatever npm currently tags as latest)
{
"EnriWeb": {
"type": "stdio",
"command": "npx",
"args": ["-y", "@bedolla/enriweb@latest"],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
}
}
}
<details> <summary>Use a local dev checkout</summary>
{
"EnriWeb": {
"type": "stdio",
"command": "node",
"args": ["C:\\\\Users\\\\Administrator\\\\Projects\\\\EnriWeb\\\\dist\\\\index.js"],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
}
}
}
</details>
Configuration
EnriWeb is configured via environment variables:
ENRIPROXY_URL(string, optional, default:http://127.0.0.1:8787)ENRIPROXY_API_KEY(string, required)ENRIWEB_TIMEOUT_MS(string, optional, default:60000)- Parsed as an integer (milliseconds).
ENRIWEB_WEB_FETCH_DEFAULT_MAX_CHARS(string, optional, default:200000)- Parsed as an integer.
ENRIWEB_GITHUB_TOKEN(string, optional)- Used for GitHub API enrichment to improve rate limits.
MCP tools
EnriWeb exposes these MCP tools:
web_searchweb_fetch
<details> <summary>Tool inputs (option-by-option)</summary>
General notes:
- All tools accept a single JSON object as their input (the MCP
argumentsfor that tool). - EnriWeb returns both:
- a short human-readable preview (
content) - the full result payload (
structuredContent)
- a short human-readable preview (
web_search
Search the web via EnriProxy.
Inputs:
query(string, required): search query string.max_results(number, optional)- Must be
>= 1. - If omitted, EnriProxy uses its configured default.
- The upper limit is enforced server-side (EnriWeb does not hardcode a max).
- Must be
recency(string, optional, default:noLimit)- One of:
oneDay|oneWeek|oneMonth|oneYear|noLimit
- One of:
allowed_domains(string[], optional): allowlist of domains to include.blocked_domains(string[], optional): blocklist of domains to exclude.search_prompt(string, optional): extra context to refine the search intent.
Example arguments object:
{
"query": "qdrant docker compose autostart systemd",
"max_results": 10,
"recency": "oneMonth"
}
web_fetch
Fetch and read content from a URL via EnriProxy.
Inputs:
url(string, required unlesscursoris provided): full URL (http://orhttps://).cursor(string, optional): opaque cursor returned by a previousweb_fetchcall.offset(number, optional, default:0): cursor read offset in characters.limit(number, optional): cursor read limit in characters (default:max_chars).prompt(string, optional): extraction hint (what to focus on).max_chars(number, optional): maximum content length (default:ENRIWEB_WEB_FETCH_DEFAULT_MAX_CHARS).
Notes:
- If the response includes a
cursor, you can page through the captured content by callingweb_fetchagain withcursor+offset+limit.
Example arguments object:
{
"url": "https://example.com/docs",
"max_chars": 200000
}
</details>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.