EnriWeb

EnriWeb

An MCP server that provides web search and URL fetching capabilities by delegating execution to an EnriProxy server. It enables AI agents to perform structured web searches and retrieve content with support for filtering, recency limits, and pagination.

Category
Visit Server

README

EnriWeb

EnriWeb is a Model Context Protocol (MCP) server over stdio that exposes web search and URL fetching tools by delegating execution to EnriProxy.

If your MCP client can call MCP tools, it can do web search / fetch in a consistent way without implementing provider-specific scraping logic.

What this project is

  • An MCP server process your MCP host launches (OpenCode, Claude Code, Codex, etc.)
  • A thin client for EnriProxy (input validation + structured output)

Requirements

  • Node.js >= 22 (recommended: Node 24 LTS)
  • A reachable EnriProxy server with:
    • POST /v1/tools/web_search
    • POST /v1/tools/web_fetch
  • An EnriProxy API key (configured on the EnriProxy side)

Install

# Global install
npm install -g @bedolla/enriweb

# Or run without installing
npx -y @bedolla/enriweb@latest --help

Build

npm install
npm run typecheck
npm run build

Usage

1) Configure your MCP host

EnriWeb runs as an MCP server over stdio. Your MCP host is responsible for launching the process.

Example: global install

{
  "EnriWeb": {
    "type": "stdio",
    "command": "enriweb",
    "args": [],
    "env": {
      "ENRIPROXY_URL": "http://127.0.0.1:8787",
      "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
    }
  }
}

Example: no install (always uses whatever npm currently tags as latest)

{
  "EnriWeb": {
    "type": "stdio",
    "command": "npx",
    "args": ["-y", "@bedolla/enriweb@latest"],
    "env": {
      "ENRIPROXY_URL": "http://127.0.0.1:8787",
      "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
    }
  }
}

<details> <summary>Use a local dev checkout</summary>

{
  "EnriWeb": {
    "type": "stdio",
    "command": "node",
    "args": ["C:\\\\Users\\\\Administrator\\\\Projects\\\\EnriWeb\\\\dist\\\\index.js"],
    "env": {
      "ENRIPROXY_URL": "http://127.0.0.1:8787",
      "ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY"
    }
  }
}

</details>

Configuration

EnriWeb is configured via environment variables:

  • ENRIPROXY_URL (string, optional, default: http://127.0.0.1:8787)
  • ENRIPROXY_API_KEY (string, required)
  • ENRIWEB_TIMEOUT_MS (string, optional, default: 60000)
    • Parsed as an integer (milliseconds).
  • ENRIWEB_WEB_FETCH_DEFAULT_MAX_CHARS (string, optional, default: 200000)
    • Parsed as an integer.
  • ENRIWEB_GITHUB_TOKEN (string, optional)
    • Used for GitHub API enrichment to improve rate limits.

MCP tools

EnriWeb exposes these MCP tools:

  • web_search
  • web_fetch

<details> <summary>Tool inputs (option-by-option)</summary>

General notes:

  • All tools accept a single JSON object as their input (the MCP arguments for that tool).
  • EnriWeb returns both:
    • a short human-readable preview (content)
    • the full result payload (structuredContent)

web_search

Search the web via EnriProxy.

Inputs:

  • query (string, required): search query string.
  • max_results (number, optional)
    • Must be >= 1.
    • If omitted, EnriProxy uses its configured default.
    • The upper limit is enforced server-side (EnriWeb does not hardcode a max).
  • recency (string, optional, default: noLimit)
    • One of: oneDay | oneWeek | oneMonth | oneYear | noLimit
  • allowed_domains (string[], optional): allowlist of domains to include.
  • blocked_domains (string[], optional): blocklist of domains to exclude.
  • search_prompt (string, optional): extra context to refine the search intent.

Example arguments object:

{
  "query": "qdrant docker compose autostart systemd",
  "max_results": 10,
  "recency": "oneMonth"
}

web_fetch

Fetch and read content from a URL via EnriProxy.

Inputs:

  • url (string, required unless cursor is provided): full URL (http:// or https://).
  • cursor (string, optional): opaque cursor returned by a previous web_fetch call.
  • offset (number, optional, default: 0): cursor read offset in characters.
  • limit (number, optional): cursor read limit in characters (default: max_chars).
  • prompt (string, optional): extraction hint (what to focus on).
  • max_chars (number, optional): maximum content length (default: ENRIWEB_WEB_FETCH_DEFAULT_MAX_CHARS).

Notes:

  • If the response includes a cursor, you can page through the captured content by calling web_fetch again with cursor + offset + limit.

Example arguments object:

{
  "url": "https://example.com/docs",
  "max_chars": 200000
}

</details>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured