EnriVision
An MCP server that enables analysis of local media files, including video, audio, and documents, by uploading them to EnriProxy for server-side extraction. It supports various complex file formats and provides structured model analysis for media types often unsupported by standard MCP clients.
README
EnriVision
EnriVision is a Model Context Protocol (MCP) server over stdio that uploads local media to EnriProxy and returns server-side extraction + model analysis.
This is useful for media types that many MCP clients cannot read reliably (videos, audio, scanned PDFs, HEIC/AVIF, large files), while keeping the MCP server itself lightweight.
What this project is
- An MCP server process your MCP host launches (OpenCode, Claude Code, Codex, etc.)
- A thin client for EnriProxy (resumable upload + structured output)
Requirements
- Node.js
>= 22(recommended: Node 24 LTS) - A reachable EnriProxy server with these endpoints enabled:
POST /v1/uploadsHEAD /v1/uploads/:idPATCH /v1/uploads/:idPOST /v1/vision/analyze
- An EnriProxy API key (configured on the EnriProxy side)
Install
# Global install
npm install -g @bedolla/enrivision
# Or run without installing
npx -y @bedolla/enrivision@latest --help
Build
npm install
npm run typecheck
npm run build
Usage
1) Configure your MCP host
EnriVision runs as an MCP server over stdio. Your MCP host is responsible for launching the process.
Example: global install
{
"EnriVision": {
"type": "stdio",
"command": "enrivision",
"args": [],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY",
"ENRIVISION_DEFAULT_LANGUAGE": "es"
}
}
}
Example: no install (always uses whatever npm currently tags as latest)
{
"EnriVision": {
"type": "stdio",
"command": "npx",
"args": ["-y", "@bedolla/enrivision@latest"],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY",
"ENRIVISION_DEFAULT_LANGUAGE": "es"
}
}
}
<details> <summary>Use a local dev checkout</summary>
{
"EnriVision": {
"type": "stdio",
"command": "node",
"args": ["C:\\\\Users\\\\Administrator\\\\Projects\\\\EnriVision\\\\dist\\\\index.js"],
"env": {
"ENRIPROXY_URL": "http://127.0.0.1:8787",
"ENRIPROXY_API_KEY": "YOUR_ENRIPROXY_API_KEY",
"ENRIVISION_DEFAULT_LANGUAGE": "es"
}
}
}
</details>
Configuration
EnriVision is configured via environment variables:
ENRIPROXY_URL(string, optional, default:http://127.0.0.1:8787)ENRIPROXY_API_KEY(string, required)ENRIVISION_TIMEOUT_MS(string, optional, default:1800000)- Parsed as an integer (milliseconds). Uploads are performed in chunks; this timeout applies per request.
ENRIVISION_DEFAULT_LANGUAGE(string, optional)- Default language to send when the tool call does not provide
language.
- Default language to send when the tool call does not provide
MCP tools
EnriVision exposes this MCP tool:
analyze_media
<details> <summary>Tool inputs (option-by-option)</summary>
General notes:
- The tool accepts a single JSON object as its input (the MCP
arguments). - Exactly one of
pathorpathsis required. - Paths must be absolute on the machine running the MCP server.
- EnriVision does not accept per-call
server_url/api_keyoverrides (these are configured via env vars).
analyze_media
Inputs:
path(string, optional): absolute local file path.paths(string[], optional): absolute local image paths (useful for UI screenshot sets).context(string, optional): high-level hint (examples:ui,diagram,chart,error,code,meeting,tutorial,photo).question(string, optional): what you want to extract/answer.language(string, optional): preferred response language (ISO 639-1; e.g.,es,en). If omitted, usesENRIVISION_DEFAULT_LANGUAGEwhen set.analysis_mode(string, optional):auto|single|multipass.max_frames(number, optional): single-pass video frames (1..20).transcribe(boolean, optional): enable/disable transcription (videos).transcription_language(string, optional): whisper hint (auto,es,en, ...).
Video targeting:
video.clip_start_seconds(number, optional)video.clip_duration_seconds(number, optional)
Multipass tuning (advanced; used only for analysis_mode: multipass):
video.segment_seconds(number, optional)video.max_segments(number, optional)video.max_frames_per_segment(number, optional)document.max_pages_total(number, optional)document.pages_per_batch(number, optional)document.max_images_per_batch(number, optional)document.scanned_text_threshold_chars(number, optional)audio.timestamps(boolean, optional)audio.segment_seconds(number, optional)audio.max_segments(number, optional)images.max_images_total(number, optional)images.images_per_batch(number, optional)images.max_dimension(number, optional)
Output:
analysis(string): model-produced analysis.media_type(string): detected media type (video,audio,image,document,image_set).extraction(object): safe metadata summary (internal routing details are stripped).
Example arguments object:
{
"path": "C:\\\\path\\\\to\\\\video.mp4",
"question": "What are the key steps demonstrated?",
"analysis_mode": "auto",
"transcribe": true,
"language": "es"
}
</details>
<details> <summary>Claude Code CLI Read(...) compatibility (reference)</summary>
Many MCP clients include a built-in Read(...) tool that can ingest local files and attach them to the model request.
This is convenient, but the set of supported formats is limited and can change across client versions.
If the file you need to analyze is not reliably supported by your client (for example .avif, .heic, .svg, videos,
audio, or Office documents), prefer EnriVision MCP so the client can upload bytes and EnriProxy can do extraction reliably.
</details>
<details> <summary>Supported media types (by extension)</summary>
EnriProxy determines media type using content-type and extension allow-lists.
Videos:
.mp4,.mov,.avi,.mkv,.webm,.m4v,.wmv,.flv,.3gp,.3g2,.ts,.mts,.m2ts,.mpeg,.mpg,.gif
Audio:
.mp3,.mp1,.mp2,.mpa,.mpga,.wav,.aiff,.aif,.aifc,.caf,.flac,.m4a,.m4b,.m4r,.aac,.ogg,.oga,.wma,.opus,.weba,.mka
Images:
.png,.apng,.jpg,.jpeg,.gif,.webp,.avif,.heic,.heif,.tiff,.tif,.bmp,.svg,.ico
Documents:
.pdf,.docx,.pptx,.xlsx,.jsonl
</details>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.