EnrichB2B MCP Server

EnrichB2B MCP Server

A server implementing the Model Context Protocol that enables users to retrieve LinkedIn profile information and activity data via EnrichB2B API, and generate text using OpenAI GPT-4 or Anthropic Claude models.

Category
Visit Server

README

MCP Template Server

A template server implementing the Model Context Protocol (MCP) with OpenAI, Anthropic, and EnrichB2B integration.

Setup

  1. Create a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -r requirements.txt
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your API keys and configuration

Running the Server

Development mode:

python server.py

Or using MCP CLI:

mcp dev server.py

Features

  • OpenAI GPT-4 integration
  • Anthropic Claude integration
  • EnrichB2B LinkedIn data integration
  • FastAPI and Uvicorn server
  • Environment configuration
  • Example resources and tools
  • Structured project layout

Project Structure

.
├── .env.example          # Template for environment variables
├── .gitignore           # Git ignore rules
├── README.md            # This file
├── requirements.txt     # Python dependencies
├── enrichb2b.py        # EnrichB2B API client
└── server.py           # MCP server implementation

Usage

  1. Start the server
  2. Connect using any MCP client
  3. Use the provided tools and resources:
    • config://app - Get server configuration
    • get_profile_details - Get LinkedIn profile information
    • get_contact_activities - Get LinkedIn user's recent activities and posts
    • gpt4_completion - Generate text using GPT-4
    • claude_completion - Generate text using Claude
    • analysis_prompt - Template for text analysis

EnrichB2B Tools

get_profile_details

Get detailed information about a LinkedIn profile:

result = await get_profile_details(
    linkedin_url="https://www.linkedin.com/in/username",
    include_company_details=True,
    include_followers_count=True
)

get_contact_activities

Get recent activities and posts from a LinkedIn profile:

result = await get_contact_activities(
    linkedin_url="https://www.linkedin.com/in/username",
    pages=1,  # Number of pages (1-50)
    comments_per_post=1,  # Comments per post (0-50)
    likes_per_post=None  # Likes per post (0-50)
)

Development

To add new features:

  1. Add new tools using the @mcp.tool() decorator
  2. Add new resources using the @mcp.resource() decorator
  3. Add new prompts using the @mcp.prompt() decorator

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured