Enhanced Knowledge Graph Memory Server
An enhanced fork of the official MCP memory server that enables persistent knowledge graph storage with automatic timestamps, tags, importance levels, date range search, comprehensive statistics, and multi-format export (JSON, CSV, GraphML).
README
Memory MCP Server
An enhanced fork of the official Model Context Protocol memory server with advanced features for timestamps, search, categorization, and export capabilities.
Knowledge graph-based persistent memory that lets Claude remember information across conversations with powerful organization and analysis tools.
Table of Contents
- Features
- What's New
- Quick Start
- Installation
- Core Concepts
- API Reference
- Data Model
- Usage Examples
- Configuration
- Development
- Contributing
- License
- Acknowledgments
Features
Core Memory Capabilities
- ✅ Knowledge Graph Storage: Entity-Relation-Observation model
- ✅ Persistent Memory: Remember information across chat sessions
- ✅ Full CRUD Operations: Create, read, update, delete entities and relations
- ✅ Flexible Search: Text-based search across entities and observations
Enhanced Features (Phases 1-4)
- 🆕 Automatic Timestamps:
createdAtandlastModifiedfields with smart updates - 🆕 Date Range Search: Filter entities/relations by creation or modification date
- 🆕 Graph Statistics: Comprehensive analytics with counts, types, and temporal data
- 🆕 Tags System: Categorize entities with case-insensitive tags
- 🆕 Importance Levels: 0-10 scale for entity prioritization
- 🆕 Advanced Filtering: Combine text, tags, importance, and date ranges
- 🆕 Multi-Format Export: JSON, CSV, and GraphML for visualization tools (Gephi, Cytoscape, yEd)
Comparison with Official Memory Server
| Feature | Official | Enhanced (This Fork) |
|---|---|---|
| Entity Management | ✅ | ✅ |
| Relation Management | ✅ | ✅ |
| Observation Tracking | ✅ | ✅ |
| Basic Search | ✅ | ✅ |
| Timestamps | ❌ | ✅ createdAt + lastModified |
| Date Range Search | ❌ | ✅ |
| Graph Statistics | ❌ | ✅ |
| Tags | ❌ | ✅ |
| Importance Levels | ❌ | ✅ 0-10 scale |
| Export Formats | ❌ | ✅ JSON/CSV/GraphML |
| Total Tools | 11 | 15 (+4 enhancements) |
What's New
Version 0.7.0 (Latest)
Phase 1 & 2: Timestamps & Analytics
- Automatic
createdAttimestamp on entity/relation creation - Smart
lastModifiedupdates (only on actual changes) - Date range filtering with ISO 8601 format
- Comprehensive graph statistics
Phase 3: Categorization
- Tags system with lowercase normalization
- Importance levels (0-10) for entity prioritization
- Enhanced filtering combining multiple criteria
Phase 4: Export & Visualization
- JSON export (pretty-printed)
- CSV export (entities + relations with proper escaping)
- GraphML export (for Gephi, Cytoscape, yEd)
- All exports support filtering
See CHANGELOG.md for detailed version history.
Quick Start
1. Install from NPM (Recommended)
npm install -g @danielsimonjr/memory-mcp
Or use with npx (no installation required):
npx @danielsimonjr/memory-mcp
2. Configure Claude Desktop
Add to claude_desktop_config.json:
Using NPM Global Install:
{
"mcpServers": {
"memory": {
"command": "mcp-server-memory"
}
}
}
Using NPX:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": ["-y", "@danielsimonjr/memory-mcp"]
}
}
}
3. Restart Claude Desktop
Restart Claude Desktop to load the enhanced memory server.
4. Start Using
Tell Claude:
Please remember that I prefer TypeScript over JavaScript.
Tag this as "preferences" with importance 8.
Claude will automatically use the enhanced tools!
Installation
Local Build (Recommended)
# Clone repository
git clone https://github.com/danielsimonjr/memory-mcp.git
cd memory-mcp/src/memory
# Install and build
npm install
npm run build
# Test
npm test
Claude Desktop Configuration
Add to ~/Library/Application Support/Claude/claude_desktop_config.json (Mac) or %APPDATA%\Claude\claude_desktop_config.json (Windows):
{
"mcpServers": {
"memory": {
"command": "node",
"args": ["<PATH_TO>/memory-mcp/src/memory/dist/index.js"],
"env": {
"MEMORY_FILE_PATH": "<PATH_TO>/memory.jsonl"
}
}
}
}
Replace <PATH_TO> with your actual paths.
VS Code
Add to .vscode/mcp.json:
{
"servers": {
"memory": {
"command": "node",
"args": ["c:/mcp-servers/memory-mcp/src/memory/dist/index.js"]
}
}
}
Core Concepts
Entities
Primary nodes in the knowledge graph.
Fields:
name(string): Unique identifierentityType(string): Classificationobservations(string[]): FactscreatedAt(string, optional): ISO 8601 timestamplastModified(string, optional): ISO 8601 timestamptags(string[], optional): Lowercase tagsimportance(number, optional): 0-10 scale
Example:
{
"name": "John_Smith",
"entityType": "person",
"observations": ["Speaks fluent Spanish"],
"createdAt": "2025-01-15T10:30:00.000Z",
"tags": ["colleague"],
"importance": 7
}
Relations
Directed connections between entities.
Fields:
from(string): Source entityto(string): Target entityrelationType(string): Relationship typecreatedAt(string, optional): ISO 8601 timestamplastModified(string, optional): ISO 8601 timestamp
Example:
{
"from": "John_Smith",
"to": "Anthropic",
"relationType": "works_at",
"createdAt": "2025-01-15T10:30:00.000Z"
}
Observations
Discrete facts about entities.
Principles:
- One fact per observation
- Atomic information
- Independently manageable
API Reference
Core Tools (11)
<details> <summary><b>create_entities</b></summary>
Create multiple new entities in the knowledge graph.
{
entities: Array<{
name: string;
entityType: string;
observations: string[];
}>
}
</details>
<details> <summary><b>create_relations</b></summary>
Create multiple new relations between entities.
{
relations: Array<{
from: string;
to: string;
relationType: string;
}>
}
</details>
<details> <summary><b>add_observations</b></summary>
Add new observations to existing entities.
{
observations: Array<{
entityName: string;
contents: string[];
}>
}
</details>
<details> <summary><b>delete_entities</b></summary>
Remove entities and their relations.
{
entityNames: string[]
}
</details>
<details> <summary><b>delete_observations</b></summary>
Remove specific observations from entities.
{
deletions: Array<{
entityName: string;
observations: string[];
}>
}
</details>
<details> <summary><b>delete_relations</b></summary>
Remove specific relations from the graph.
{
relations: Array<{
from: string;
to: string;
relationType: string;
}>
}
</details>
<details> <summary><b>read_graph</b></summary>
Read the entire knowledge graph.
No input required. </details>
<details> <summary><b>search_nodes</b></summary>
Search for nodes based on query.
{
query: string;
}
</details>
<details> <summary><b>open_nodes</b></summary>
Retrieve specific nodes by name.
{
names: string[];
}
</details>
Enhancement Tools (4)
<details> <summary><b>search_by_date_range</b> - Phase 2</summary>
Filter entities and relations within a date range.
{
startDate?: string; // ISO 8601
endDate?: string; // ISO 8601
entityType?: string;
tags?: string[];
}
Example:
{
"startDate": "2025-01-01T00:00:00.000Z",
"endDate": "2025-01-31T23:59:59.999Z",
"tags": ["project"]
}
</details>
<details> <summary><b>get_graph_stats</b> - Phase 2</summary>
Get comprehensive statistics about the knowledge graph.
No input required.
Returns: Entity counts, relation counts, type breakdowns, oldest/newest items, date ranges. </details>
<details> <summary><b>add_tags / remove_tags</b> - Phase 3</summary>
Add or remove tags from an entity.
{
entityName: string;
tags: string[];
}
Tags are normalized to lowercase. </details>
<details> <summary><b>set_importance</b> - Phase 3</summary>
Set the importance level for an entity (0-10).
{
entityName: string;
importance: number; // 0-10
}
</details>
<details> <summary><b>export_graph</b> - Phase 4</summary>
Export the knowledge graph in JSON, CSV, or GraphML format.
{
format: "json" | "csv" | "graphml";
filter?: {
startDate?: string;
endDate?: string;
entityType?: string;
tags?: string[];
}
}
Formats:
- JSON: Pretty-printed
- CSV: Entities + relations with escaping
- GraphML: For Gephi, Cytoscape, yEd </details>
Data Model
Entity Schema
interface Entity {
name: string;
entityType: string;
observations: string[];
createdAt?: string; // ISO 8601
lastModified?: string; // ISO 8601
tags?: string[]; // Lowercase
importance?: number; // 0-10
}
Relation Schema
interface Relation {
from: string;
to: string;
relationType: string;
createdAt?: string; // ISO 8601
lastModified?: string; // ISO 8601
}
Storage
- Format: JSONL (JSON Lines)
- Default:
memory.jsonlin server directory - Custom: Set
MEMORY_FILE_PATHenvironment variable
Usage Examples
Example 1: Create Entity with Tags
{
"entities": [{
"name": "Alice_Johnson",
"entityType": "person",
"observations": ["Lead developer", "TypeScript specialist"]
}]
}
// Then add tags
{
"entityName": "Alice_Johnson",
"tags": ["colleague", "tech-lead"]
}
// Set importance
{
"entityName": "Alice_Johnson",
"importance": 9
}
Example 2: Date Range Search
{
"startDate": "2025-01-01T00:00:00.000Z",
"endDate": "2025-01-31T23:59:59.999Z",
"tags": ["project"]
}
Example 3: Export to GraphML
{
"format": "graphml",
"filter": {
"entityType": "person",
"tags": ["colleague"]
}
}
Configuration
Environment Variables
MEMORY_FILE_PATH: Path to memory storage file (default:memory.jsonl)
Example Configuration
{
"mcpServers": {
"memory": {
"command": "node",
"args": ["c:/mcp-servers/memory-mcp/src/memory/dist/index.js"],
"env": {
"MEMORY_FILE_PATH": "c:/data/memory.jsonl"
}
}
}
}
Development
Prerequisites
- Node.js 18+
- npm 9+
- TypeScript 5.6+
Build
cd src/memory
npm install
npm run build # Production
npm run watch # Development
Test
npm test
Structure
memory-mcp/
├── src/memory/
│ ├── src/index.ts # Main implementation
│ ├── dist/ # Compiled output
│ └── package.json
├── CHANGELOG.md
├── CONTRIBUTING.md
├── WORKFLOW.md
└── README.md
See WORKFLOW.md for detailed development guide.
Contributing
We welcome contributions!
See:
- CONTRIBUTING.md - Guidelines
- WORKFLOW.md - Development workflow
- CODE_OF_CONDUCT.md - Community standards
Ways to Help:
- 🐛 Report bugs
- ✨ Request features
- 🔧 Submit fixes
- 📚 Improve docs
- 🧪 Add tests
License
MIT License - see LICENSE
You are free to use, modify, and distribute this software.
Acknowledgments
Original Project
Enhanced fork of Model Context Protocol memory server by Anthropic.
Original License: MIT
Enhancements
Developer: Daniel Simon Jr.
Features Added:
- Automatic timestamps (createdAt, lastModified)
- Date range search and filtering
- Graph statistics and analytics
- Tags and importance categorization
- Multi-format export (JSON, CSV, GraphML)
Community
Thanks to:
- 🛠️ MCP Specification
- 📚 MCP community
- Vitest, TypeScript, Node.js
Repository: https://github.com/danielsimonjr/memory-mcp Issues: https://github.com/danielsimonjr/memory-mcp/issues
Made with ❤️ for the MCP community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.