Enhanced Interactive Feedback MCP Server

Enhanced Interactive Feedback MCP Server

An advanced MCP server that provides interactive feedback mechanisms with support for various feedback types, multi-language capabilities, and team collaboration features for AI tools like Cursor, Cline, and Windsurf.

Category
Visit Server

Tools

interactive_feedback

增强型交互式反馈工具 Args: project_directory: 项目目录路径 message: 反馈消息或问题 feedback_type: 反馈类型 (question/confirmation/selection/code_review/suggestion/error_report) priority: 优先级 (low/medium/high/urgent) options: 预设选项列表 (用于选择题) language: 语言设置 (en/zh) timeout: 超时时间(秒) tags: 标签列表 user_id: 用户ID Returns: 包含用户反馈和分析信息的字典

get_feedback_analytics

获取反馈分析报告 Args: project_directory: 项目目录 days: 分析天数 user_id: 用户ID Returns: 分析报告

create_feedback_template

创建自定义反馈模板 Args: template_name: 模板名称 template_content: 模板内容 (多语言支持) template_type: 模板类型 Returns: 创建结果

execute_with_feedback

执行命令并请求反馈 Args: command: 要执行的命令 project_directory: 项目目录 require_confirmation: 是否需要确认 language: 语言设置 Returns: 执行结果和反馈

README

Enhanced Interactive Feedback MCP Server

🚀 Features

原有功能增强

  • ✅ 交互式反馈机制(支持问题、确认、选择等多种类型)
  • ✅ 项目级配置管理
  • ✅ 跨平台支持(Windows、macOS、Linux)
  • ✅ 多AI工具兼容(Cursor、Cline、Windsurf等)

🆕 新增功能

1. 智能分析引擎

  • 📊 反馈模式分析和可视化
  • 🤖 基于历史数据的智能建议
  • 📈 性能监控和响应时间分析
  • 🎯 个性化反馈优化

2. 多语言支持

  • 🌐 支持中文、英文等多种语言
  • 🔄 自动语言检测
  • 📝 本地化反馈模板

3. 团队协作

  • 👥 多用户支持
  • 🔐 基于角色的访问控制
  • 📝 团队反馈历史共享
  • 💬 协作式代码审查

4. 反馈模板系统

  • 📋 内置常用模板
  • ✏️ 自定义模板创建
  • 🔧 模板参数化支持
  • 📚 模板库管理

5. 增强的反馈类型

  • ❓ 问题询问
  • ✅ 操作确认
  • 📋 选项选择
  • 🔍 代码审查
  • 💡 建议提供
  • ⚠️ 错误报告

6. 通知和提醒

  • 🔔 多渠道通知(控制台、文件、Webhook)
  • ⏰ 优先级管理
  • 🎵 声音提醒
  • 📱 移动端推送(计划中)

7. 插件系统

  • 🔌 Slack集成
  • 💬 Discord集成
  • 📧 邮件通知
  • 🎫 Jira集成

📦 Installation

快速安装

# 下载安装脚本
curl -LsSf https://github.com/your-repo/enhanced-feedback-mcp/install.sh | sh

# 或手动安装
git clone https://github.com/your-repo/enhanced-feedback-mcp.git
cd enhanced-feedback-mcp
chmod +x install.sh
./install.sh

手动安装

# 1. 克隆项目
git clone https://github.com/your-repo/enhanced-feedback-mcp.git
cd enhanced-feedback-mcp

# 2. 安装依赖
uv sync

# 3. 运行服务器
uv run server.py

⚙️ Configuration

MCP配置示例(Cursor)

{
  "mcpServers": {
    "enhanced-interactive-feedback-mcp": {
      "command": "uv",
      "args": [
        "--directory", "/path/to/enhanced-feedback-mcp",
        "run", "server.py"
      ],
      "timeout": 600,
      "autoApprove": [
        "interactive_feedback",
        "get_feedback_analytics",
        "create_feedback_template",
        "execute_with_feedback"
      ]
    }
  }
}

自定义提示词

在完成任何任务之前,请务必调用 interactive_feedback MCP工具来获取用户反馈。
使用中文进行交互,并根据任务类型选择合适的 feedback_type。
如果反馈为空,可以结束请求,但不要循环调用。

🛠️ Usage Examples

基础反馈

# AI助手调用示例
interactive_feedback(
    project_directory="/path/to/project",
    message="我已经实现了用户登录功能,需要您确认是否符合要求?",
    feedback_type="confirmation",
    language="zh",
    priority="medium"
)

代码审查

interactive_feedback(
    project_directory="/path/to/project", 
    message="请审查这个新增的用户认证模块",
    feedback_type="code_review",
    language="zh",
    tags=["authentication", "security"],
    priority="high"
)

错误处理

execute_with_feedback(
    command="npm test",
    project_directory="/path/to/project",
    require_confirmation=True,
    language="zh"
)

获取分析报告

get_feedback_analytics(
    project_directory="/path/to/project",
    days=30
)

📊 Analytics Dashboard

增强版提供详细的分析功能:

  • 📈 反馈频率趋势
  • ⏱️ 平均响应时间
  • 🏷️ 常用标签分析
  • 🎯 智能建议准确性
  • 👥 团队协作统计

🔧 Advanced Features

自定义模板

# templates/custom_template.yaml
type: "custom"
content:
  en: "Custom template: {message}"
  zh: "自定义模板:{message}"

插件开发

# plugins/custom_plugin.py
class CustomPlugin:
    def on_feedback_received(self, feedback):
        # 自定义处理逻辑
        pass

Webhook集成

# 配置Webhook通知
notifications:
  webhook:
    url: "https://your-webhook.com/feedback"
    headers:
      Authorization: "Bearer your-token"

🤝 Contributing

欢迎贡献代码和建议!

  1. Fork 项目
  2. 创建功能分支
  3. 提交更改
  4. 创建 Pull Request

📄 License

MIT License - 详见 LICENSE 文件

🙏 Acknowledgments

基于原始项目 interactive-feedback-mcp@fabiomlferreira 开发

增强功能由 AI 辅助开发完成

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured