Engagio MCP
Enables Twitter engagement intelligence by monitoring accounts and topics to identify high-value interaction opportunities. It allows users to post strategic replies, manage a reply queue, and track performance analytics directly through Claude Code.
README
Engagio MCP
Twitter engagement intelligence for Claude Code. Find high-value tweets, post strategic replies, track performance.
What It Does
- Monitor accounts - Track tweets from people you want to engage with
- Monitor topics - Track hashtags and keywords (#buildinpublic, AI agents)
- Score opportunities - Rank tweets by engagement velocity + author reach
- Post replies - Reply directly from Claude with queue spacing
- Track analytics - See which accounts give you the best engagement ROI
- Timing insights - Learn when your replies perform best
Setup
1. Install dependencies
cd engagio-mcp
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
2. Configure environment
Create .env file:
# Twitter API (Official - for posting)
TWITTER_API_KEY=your_api_key
TWITTER_API_KEY_SECRET=your_api_key_secret
TWITTER_ACCESS_TOKEN=your_access_token
TWITTER_ACCESS_TOKEN_SECRET=your_access_token_secret
# twitterapi.io (for reading - cheaper)
TWITTERAPI_IO_TOKEN=your_twitterapi_io_token
# Supabase
SUPABASE_URL=your_supabase_url
SUPABASE_KEY=your_supabase_anon_key
3. Set up database
Create these tables in Supabase:
-- Core tables
CREATE TABLE monitored_accounts (
username TEXT PRIMARY KEY,
user_id TEXT NOT NULL,
name TEXT,
followers INT DEFAULT 0,
bio TEXT,
notes TEXT,
last_fetched TIMESTAMP WITH TIME ZONE,
added_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
-- ROI tracking
total_replies INT DEFAULT 0,
total_likes_received INT DEFAULT 0,
avg_engagement FLOAT DEFAULT 0
);
CREATE TABLE tweets (
id TEXT PRIMARY KEY,
author_username TEXT NOT NULL,
author_user_id TEXT,
text TEXT NOT NULL,
likes INT DEFAULT 0,
retweets INT DEFAULT 0,
replies INT DEFAULT 0,
views INT DEFAULT 0,
posted_at TIMESTAMP WITH TIME ZONE,
fetched_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
engagement_score FLOAT DEFAULT 0,
-- Enhanced fields
is_retweet BOOLEAN DEFAULT FALSE,
is_thread BOOLEAN DEFAULT FALSE,
thread_id TEXT,
author_followers INT DEFAULT 0
);
CREATE TABLE replies (
id SERIAL PRIMARY KEY,
original_tweet_id TEXT NOT NULL REFERENCES tweets(id),
original_author TEXT NOT NULL,
reply_text TEXT NOT NULL,
reply_tweet_id TEXT,
replied_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
likes_received INT DEFAULT 0,
replies_received INT DEFAULT 0,
reply_tone TEXT,
-- Timing analytics
hour_of_day INT,
day_of_week INT
);
-- Topic monitoring
CREATE TABLE monitored_topics (
id SERIAL PRIMARY KEY,
topic TEXT NOT NULL UNIQUE,
type TEXT DEFAULT 'hashtag',
added_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Reply queue
CREATE TABLE reply_queue (
id SERIAL PRIMARY KEY,
tweet_id TEXT NOT NULL,
reply_text TEXT NOT NULL,
scheduled_for TIMESTAMP WITH TIME ZONE,
status TEXT DEFAULT 'pending',
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
posted_at TIMESTAMP WITH TIME ZONE
);
4. Add to Claude Code
Add to your .mcp.json:
{
"mcpServers": {
"engagio": {
"type": "stdio",
"command": "/path/to/engagio-mcp/venv/bin/python",
"args": ["/path/to/engagio-mcp/server.py"],
"env": {}
}
}
}
Restart Claude Code.
Usage
Monitor accounts
"Add @levelsio to my monitored accounts"
"Add these accounts: sama, paulg, naval"
"List my monitored accounts"
"Remove @someone from monitoring"
"Backfill bios for all accounts"
"Add notes for @levelsio: Built Nomad List, Photo AI"
Monitor topics
"Add topic #buildinpublic"
"Add topic AI agents"
"List my monitored topics"
"Fetch tweets for #buildinpublic"
Find opportunities (cost-optimized)
"Fetch tweets from top 10 accounts" → fetch_tweets(top_n=10) - CHEAP
"Fetch from levelsio only" → fetch_tweets(username="levelsio") - CHEAPEST
"Fetch all tweets" → fetch_tweets() - EXPENSIVE (all accounts)
"Show me top 5 engagement opportunities" → FREE (uses cache)
"Show opportunities with min 100k followers" → FREE
"Search cached tweets about AI" → search_tweets("AI", cache_only=True) - FREE
"Search Twitter for AI agents" → search_tweets("AI agents") - costs money
Engage
"Generate 3 reply options for that tweet"
"Post this reply: [your text]"
"Queue this reply: [your text]"
"View my reply queue"
"Post next queued reply"
Track performance
"Update my reply performance stats"
"Show my engagement analytics"
"Show my reply history"
"Show account ROI"
"Show timing insights"
Thread context
"Get thread for tweet [id]"
Scoring Algorithm
Tweets are scored by engagement velocity weighted by author reach:
base_score = (likes + retweets×2 + replies×3) / √(minutes_old + 1)
follower_multiplier = 1 + log10(followers) / 10
score = base_score × follower_multiplier
- Higher engagement = higher score
- Newer tweets = higher score
- Replies weighted highest (conversation value)
- More followers = higher multiplier (log scale to prevent domination)
Architecture
Claude Code
↓
Engagio MCP
├── twitterapi.io (READ - $0.15/1000 tweets)
├── Twitter API (WRITE - free tier, 17/day)
└── Supabase (persistent storage)
Tools Reference
Account Management
| Tool | Description |
|---|---|
engagio_add_account(username) |
Monitor a Twitter account (auto-fetches bio) |
engagio_add_accounts_bulk(usernames) |
Add multiple accounts with rate limit handling |
engagio_remove_account(username) |
Stop monitoring |
engagio_remove_accounts_bulk(usernames) |
Remove multiple accounts |
engagio_list_accounts() |
List monitored accounts with bios/notes |
engagio_backfill_bios() |
Fetch bios for accounts missing them |
engagio_update_account_notes(username, notes) |
Add accomplishments/context |
Topic Management
| Tool | Description |
|---|---|
engagio_add_topic(topic) |
Monitor a hashtag or keyword |
engagio_remove_topic(topic) |
Stop monitoring topic |
engagio_list_topics() |
List monitored topics |
engagio_fetch_topic_tweets(topic?, hours?) |
Fetch tweets for topics |
Tweet Discovery (Cost-Optimized)
| Tool | Description | Cost |
|---|---|---|
engagio_fetch_tweets(top_n=10) |
Fetch from top N accounts by followers | ~$0.015 |
engagio_fetch_tweets(username="x") |
Fetch from single account | ~$0.0015 |
engagio_fetch_tweets() |
Fetch from ALL accounts | ~$0.09 |
engagio_get_opportunities(...) |
Ranked opportunities with filters | FREE |
engagio_search_tweets(query, cache_only=True) |
Search cached tweets | FREE |
engagio_search_tweets(query) |
Search Twitter API | costs $ |
engagio_get_tweet(tweet_id) |
Get tweet details | FREE |
engagio_get_thread(tweet_id) |
Get full thread context | FREE |
fetch_tweets parameters:
username: Fetch single account onlytop_n: Limit to top N accounts by followersskip_recent_hours: Skip accounts fetched within X hours (default: 2)
Engagement
| Tool | Description |
|---|---|
engagio_post_reply(tweet_id, text, tone?) |
Post a reply immediately |
engagio_post_tweet(text) |
Post original tweet |
engagio_queue_reply(tweet_id, text) |
Add reply to queue (15min spacing) |
engagio_view_queue() |
View pending replies |
engagio_post_next() |
Post next due reply |
engagio_clear_queue() |
Clear reply queue |
Analytics
| Tool | Description |
|---|---|
engagio_get_reply_history(days?) |
Your recent replies |
engagio_update_reply_performance(days?) |
Update engagement stats |
engagio_get_analytics(days?) |
Overall engagement analytics |
engagio_get_account_roi(days?) |
ROI per monitored account |
engagio_get_timing_insights(days?) |
Best posting times |
Cost Optimization
Built-in Rate Limiting
- 3 second minimum between ALL API calls
- Auto-retry with exponential backoff (10s → 20s → 40s)
last_fetchedtracking to skip recently fetched accounts
Cost Estimates
| Action | API Calls | Est. Cost |
|---|---|---|
| Top 10 fetch | 10 | ~$0.015 |
| Single account | 1 | ~$0.0015 |
| Cache search | 0 | FREE |
| Get opportunities | 0 | FREE |
Best Practices
- Use
fetch_tweets(top_n=10)for daily routine - Use
search_tweets(query, cache_only=True)to search cached data - Let
skip_recent_hoursprevent duplicate fetches - Only do full fetches (
fetch_tweets()) when necessary
API Costs
- twitterapi.io: ~$0.0015 per API call
- Twitter API: Free tier (17 posts/day, 1,500/month cap)
- Supabase: Free tier
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.