ElevenLabs MCP Server
Enables seamless integration with ElevenLabs Conversational AI to manage agents, tools, and knowledge base sources. It supports RAG indexing, webhook integration, and document management for building advanced voice-enabled AI agents.
README
ElevenLabs MCP Server
A complete Model Context Protocol (MCP) server for ElevenLabs Conversational AI, providing seamless integration with agents, tools, and knowledge base management.
Features
- Agent Management: Create, update, delete, and list ElevenLabs conversational AI agents
- Tools Integration: Manage webhook and client-side tools for agent functionality
- Knowledge Base: Handle document upload, URL scraping, and text-based knowledge sources
- RAG Support: Compute and manage Retrieval-Augmented Generation indices
- Real-time Updates: Subscribe to resource changes and notifications
- Claude Desktop Integration: Easy setup for Claude Desktop users
- Cloud Deployment: Docker container ready for remote deployment
Installation
Local Development
- Clone the repository:
git clone https://github.com/anthropics/elevenlabs-mcp-server.git
cd elevenlabs-mcp-server
- Install dependencies:
pip install -r requirements.txt
- Set up environment variables:
cp .env.example .env
# Edit .env with your ElevenLabs API key
- Install the package:
pip install -e .
Production Installation
pip install elevenlabs-mcp-server
Configuration
Environment Variables
Create a .env file with the following variables:
ELEVENLABS_API_KEY=your-elevenlabs-api-key-here
ELEVENLABS_BASE_URL=https://api.elevenlabs.io/v1
MCP_SERVER_NAME=elevenlabs-mcp-server
MCP_SERVER_VERSION=1.0.0
REQUEST_TIMEOUT=30
MAX_RETRIES=3
LOG_LEVEL=INFO
Claude Desktop Integration
Add the following to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"elevenlabs": {
"command": "python",
"args": ["-m", "elevenlabs_mcp.server"],
"env": {
"ELEVENLABS_API_KEY": "your-elevenlabs-api-key-here"
}
}
}
}
Usage
Starting the Server
# Using the installed command
elevenlabs-mcp-server
# Or using Python module
python -m elevenlabs_mcp.server
Available Tools
Agent Management
create_agent: Create a new conversational AI agentget_agent: Retrieve agent configuration by IDlist_agents: List all agents with paginationupdate_agent: Update existing agent configurationdelete_agent: Delete an agent
Tool Management
create_tool: Create webhook or client-side toolsget_tool: Retrieve tool configuration by IDlist_tools: List all tools with optional filteringupdate_tool: Update existing tool configurationdelete_tool: Delete a tool
Knowledge Base Management
create_knowledge_base_from_text: Create knowledge base from text contentcreate_knowledge_base_from_url: Create knowledge base from URL scrapingget_knowledge_base_document: Retrieve document detailslist_knowledge_base_documents: List all knowledge base documentsupdate_knowledge_base_document: Update document metadatadelete_knowledge_base_document: Delete a documentcompute_rag_index: Compute RAG index for enhanced retrievalget_document_content: Get full document content and chunks
Example Usage
Creating an Agent
{
"conversation_config": {
"agent": {
"language": "en",
"prompt": {
"prompt": "You are a helpful customer service agent.",
"built_in_tools": ["language_detection", "end_call"]
},
"first_message": "Hello! How can I help you today?"
},
"asr": {
"quality": "high",
"provider": "elevenlabs"
},
"tts": {
"model_id": "eleven_turbo_v2",
"voice_id": "21m00Tcm4TlvDq8ikWAM"
}
},
"name": "Customer Service Agent"
}
Creating a Webhook Tool
{
"tool_type": "webhook",
"name": "weather_lookup",
"description": "Get current weather information",
"url": "https://api.weather.com/v1/current",
"method": "GET",
"parameters": [
{
"name": "location",
"type": "string",
"description": "City name for weather lookup",
"required": true
}
]
}
Creating Knowledge Base from Text
{
"text": "This is important company information about our products...",
"name": "Company Product Guide",
"description": "Comprehensive guide to our product offerings"
}
Resources
The server exposes the following MCP resources:
elevenlabs://agents: List all agentselevenlabs://tools: List all toolselevenlabs://knowledge-base: List all knowledge base documents
Cloud Deployment
Docker
- Build the Docker image:
docker build -t elevenlabs-mcp-server .
- Run the container:
docker run -e ELEVENLABS_API_KEY=your-api-key elevenlabs-mcp-server
Docker Compose
version: '3.8'
services:
elevenlabs-mcp:
build: .
environment:
- ELEVENLABS_API_KEY=your-api-key
- LOG_LEVEL=INFO
ports:
- "8000:8000"
restart: unless-stopped
Cloud Platforms
Deploy to your preferred cloud platform:
- AWS: Use ECS, EKS, or Lambda
- Google Cloud: Use Cloud Run, GKE, or Cloud Functions
- Azure: Use Container Instances, AKS, or Functions
- Heroku: Use container deployment
- Railway: Connect your GitHub repository
API Reference
Agent Configuration Schema
{
"conversation_config": {
"agent": {
"language": "en",
"prompt": {
"prompt": "System prompt for the agent",
"tool_ids": ["tool_id_1", "tool_id_2"],
"built_in_tools": ["language_detection", "end_call"]
},
"first_message": "Initial greeting message"
},
"asr": {
"quality": "high",
"provider": "elevenlabs",
"user_input_audio_format": "pcm_16000"
},
"tts": {
"model_id": "eleven_turbo_v2",
"voice_id": "voice_id_here"
}
},
"platform_settings": {
"evaluation_config": {
"success_threshold": 0.7
}
}
}
Tool Configuration Schema
Webhook Tool
{
"type": "webhook",
"name": "tool_name",
"description": "Tool description",
"url": "https://api.example.com/endpoint",
"method": "POST",
"headers": {
"Authorization": "Bearer token"
},
"parameters": [
{
"name": "param_name",
"type": "string",
"description": "Parameter description",
"required": true
}
]
}
Client Tool
{
"type": "client",
"name": "tool_name",
"description": "Tool description",
"parameters": [
{
"name": "param_name",
"type": "string",
"description": "Parameter description",
"required": true
}
],
"wait_for_response": false
}
Error Handling
The server provides comprehensive error handling with structured error responses:
{
"error": "Descriptive error message",
"details": {
"status_code": 400,
"error_type": "validation_error"
}
}
Development
Running Tests
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Run tests with coverage
pytest --cov=elevenlabs_mcp --cov-report=html
Code Quality
# Format code
black src/ tests/
# Sort imports
isort src/ tests/
# Lint code
flake8 src/ tests/
# Type checking
mypy src/
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
- Documentation: GitHub README
- Issues: GitHub Issues
- ElevenLabs API: Official Documentation
- MCP Protocol: Specification
Changelog
v1.0.0
- Initial release
- Full agent management support
- Tools and knowledge base integration
- Claude Desktop configuration
- Docker deployment support
- Comprehensive error handling
- Complete API coverage
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.