Elenchus MCP Server
An adversarial code verification system that uses a Verifier-Critic debate loop to systematically uncover security, correctness, and performance issues. It implements the Socratic method to provide deep semantic analysis and dialectical reasoning beyond traditional static linting.
README
Elenchus MCP Server
English | 한국어
Adversarial Code Verification System using Verifier↔Critic Debate Loop
Elenchus (ἔλεγχος): Socrates' method of refutation through systematic questioning - exposing contradictions to reach truth.
Table of Contents
- Overview
- Key Features
- Quick Start
- Installation
- Usage
- MCP Tools Reference
- MCP Resources
- MCP Prompts
- Verification Modes
- Automatic Verification
- Issue Lifecycle
- Convergence Detection
- Token Optimization
- Configuration
- Architecture
- Security
- Troubleshooting
- Development
- License
Overview
Elenchus is a Model Context Protocol (MCP) server that implements adversarial code verification. Unlike simple linting or static analysis, Elenchus orchestrates a debate between Verifier and Critic agents to systematically uncover issues through dialectical reasoning.
Why Adversarial Verification?
| Traditional Approach | Elenchus Approach |
|---|---|
| Single-pass analysis | Multi-round debate |
| Checklist-based | Intent-based semantic analysis |
| Fixed rules | Adaptive convergence |
| Silent on clean code | Explicit negative assertions |
The Verifier↔Critic Loop
┌──────────────────────────────────────────────────────────────┐
│ VERIFICATION LOOP │
├──────────────────────────────────────────────────────────────┤
│ Round 1: Verifier → Examines code, RAISES issues │
│ Round 2: Critic → Challenges issues (VALID/INVALID/PARTIAL)│
│ Round 3: Verifier → Defends, resolves, or finds new issues │
│ Round 4: Critic → Re-evaluates, checks coverage │
│ ...continues until convergence... │
│ Final: Verdict (PASS / FAIL / CONDITIONAL) │
└──────────────────────────────────────────────────────────────┘
Key Features
🔄 Adversarial Debate System
- Verifier: Finds issues with evidence
- Critic: Challenges findings, validates claims
- Role Enforcement: Strict alternation with compliance scoring
📊 Intent-Based Convergence
- Semantic understanding instead of keyword matching
- 5 category coverage (Security, Correctness, Reliability, Maintainability, Performance)
- Edge case documentation requirements
- Negative assertions for clean code
🔍 Automatic Impact Analysis
- Dependency graph construction
- Ripple effect prediction
- Cascade depth calculation
- Risk level assessment
💾 Session Management
- Checkpoint/rollback support
- Global session storage
- Audit trail preservation
⚡ Token Optimization (Optional)
- Differential analysis (verify only changed code)
- Response caching
- Selective chunking
- Tiered verification pipeline
Quick Start
Add to your MCP client configuration:
{
"mcpServers": {
"elenchus": {
"command": "npx",
"args": ["-y", "@jhlee0409/elenchus-mcp"]
}
}
}
Then use naturally with your AI assistant:
"Please verify src/auth for security issues"
See Installation for client-specific setup instructions.
Installation
Supported Clients
| Client | Status | Notes |
|---|---|---|
| VS Code (Copilot) | ✅ Supported | Requires v1.102+ |
| Cursor | ✅ Supported | 40 tool limit applies |
| Other MCP Clients | ✅ Compatible | Any stdio-based client |
VS Code (GitHub Copilot)
Add to .vscode/mcp.json:
{
"mcp": {
"servers": {
"elenchus": {
"command": "npx",
"args": ["-y", "@jhlee0409/elenchus-mcp"]
}
}
}
}
Cursor
Go to Settings > MCP > Add new global MCP Server:
{
"mcpServers": {
"elenchus": {
"command": "npx",
"args": ["-y", "@jhlee0409/elenchus-mcp"]
}
}
}
Usage
Simply describe what you want to verify:
"Verify src/auth for security vulnerabilities"
"Check the payment module for edge cases"
"Review src/api for correctness and reliability issues"
Your AI assistant will automatically use Elenchus tools.
For structured workflows, see MCP Prompts.
MCP Tools Reference
Session Lifecycle
elenchus_start_session
Initialize a new verification session.
Inputs:
target(string, required): Target path to verify (file or directory)requirements(string, required): Verification requirements/focus areasworkingDir(string, required): Working directory for relative pathsmaxRounds(number, optional): Maximum rounds before stopping (default: 10)verificationMode(object, optional): Mode configurationmode:"standard"|"fast-track"|"single-pass"skipCriticForCleanCode: boolean
differentialConfig(object, optional): Verify only changed filescacheConfig(object, optional): Cache previous verificationschunkingConfig(object, optional): Split large files into chunkspipelineConfig(object, optional): Tiered verification
Returns: Session ID and initial context including files collected, dependency graph stats, and role configuration.
Example:
elenchus_start_session({
target: "src/auth",
requirements: "Security audit for authentication",
workingDir: "/path/to/project",
verificationMode: { mode: "fast-track" }
})
elenchus_get_context
Get current session context including files, issues, and proactive guidance.
Inputs:
sessionId(string, required): The session ID
Returns: Files, issues summary, focus areas, unreviewed files, recommendations.
elenchus_submit_round
Submit a Verifier or Critic round.
Inputs:
sessionId(string, required): The session IDrole("verifier"|"critic", required): Role for this roundoutput(string, required): Full agent analysis outputissuesRaised(Issue[], optional): New issues (Verifier role)issuesResolved(string[], optional): Resolved issue IDs (Critic role)
Issue Schema:
{
id: string,
category: "SECURITY" | "CORRECTNESS" | "RELIABILITY" | "MAINTAINABILITY" | "PERFORMANCE",
severity: "CRITICAL" | "HIGH" | "MEDIUM" | "LOW",
summary: string,
location: string, // "file:line" format
description: string,
evidence: string // Code snippet or proof
}
Returns: Round number, convergence status, mediator interventions, role compliance score.
elenchus_end_session
End session with final verdict.
Inputs:
sessionId(string, required): The session IDverdict("PASS"|"FAIL"|"CONDITIONAL", required): Final verdict
Returns: Session summary including total rounds, issues by category and severity.
elenchus_get_issues
Query issues with optional filtering.
Inputs:
sessionId(string, required): The session IDstatus("all"|"unresolved"|"critical", optional): Filter by status
Returns: Array of issues matching the filter.
State Management
elenchus_checkpoint
Create a checkpoint for potential rollback.
Inputs:
sessionId(string, required): The session ID
Returns: Success status and round number.
elenchus_rollback
Rollback to a previous checkpoint.
Inputs:
sessionId(string, required): The session IDtoRound(number, required): Round number to rollback to
Returns: Success status and restored round number.
Analysis Tools
elenchus_ripple_effect
Analyze impact of changing a file.
Inputs:
sessionId(string, required): The session IDchangedFile(string, required): File that will be changedchangedFunction(string, optional): Specific function within the file
Returns: Affected files, dependency paths, cascade depth, and recommendations.
Example:
elenchus_ripple_effect({
sessionId: "...",
changedFile: "src/auth/login.ts",
changedFunction: "validateToken"
})
// Returns: { affectedFiles: [...], cascadeDepth: 2, totalAffected: 8 }
elenchus_mediator_summary
Get mediator analysis summary.
Inputs:
sessionId(string, required): The session ID
Returns: Dependency graph stats, coverage metrics, intervention history.
Role Enforcement
elenchus_get_role_prompt
Get role-specific guidelines.
Inputs:
role("verifier"|"critic", required): Role to get prompt for
Returns: System prompt, output template, checklist, mustDo/mustNotDo rules, focus areas.
elenchus_role_summary
Get role compliance summary for a session.
Inputs:
sessionId(string, required): The session ID
Returns: Compliance history, average scores, violations, current expected role.
elenchus_update_role_config
Update role enforcement settings.
Inputs:
sessionId(string, required): The session IDstrictMode(boolean, optional): Reject non-compliant roundsminComplianceScore(number, optional): Minimum score (0-100)requireAlternation(boolean, optional): Require role alternation
Returns: Updated configuration.
Re-verification
elenchus_start_reverification
Start re-verification of resolved issues from a previous session.
Inputs:
previousSessionId(string, required): Original session IDworkingDir(string, required): Working directorytargetIssueIds(string[], optional): Specific issues to re-verifymaxRounds(number, optional): Maximum rounds (default: 6)
Returns: New session ID with focused context on target issues.
MCP Resources
Access session data via URI-based resources:
| URI Pattern | Description |
|---|---|
elenchus://sessions/ |
List all active sessions |
elenchus://sessions/{sessionId} |
Get specific session details |
Usage:
Read elenchus://sessions/
Read elenchus://sessions/2026-01-17_src-auth_abc123
MCP Prompts (Slash Commands)
| Prompt Name | Description |
|---|---|
verify |
Run complete Verifier↔Critic loop |
consolidate |
Create prioritized fix plan |
apply |
Apply fixes with verification |
complete |
Full pipeline until zero issues |
cross-verify |
Adversarial cross-verification |
auto-verify |
Automatic verification using MCP Sampling |
Invocation format varies by client. Check your MCP client's documentation.
Verification Modes
Three modes for different use cases:
| Mode | Min Rounds | Critic Required | Best For |
|---|---|---|---|
standard |
3 | Yes | Thorough verification |
fast-track |
1 | Optional | Quick validation |
single-pass |
1 | No | Fastest, Verifier-only |
Example:
elenchus_start_session({
target: "src/",
requirements: "Security audit",
workingDir: "/project",
verificationMode: {
mode: "fast-track",
skipCriticForCleanCode: true
}
})
Automatic Verification (MCP Sampling)
Elenchus supports fully automatic verification using MCP Sampling capability. The server autonomously orchestrates the Verifier↔Critic debate loop without manual intervention.
How It Works
┌─────────────────────────────────────────────────────────────┐
│ AUTOMATIC VERIFICATION │
├─────────────────────────────────────────────────────────────┤
│ 1. Client calls elenchus_auto_verify │
│ 2. Server creates session and context │
│ 3. Server requests Verifier completion via MCP Sampling │
│ 4. Server parses response, extracts issues │
│ 5. Server requests Critic completion via MCP Sampling │
│ 6. Server parses response, updates issue statuses │
│ 7. Repeat until convergence or max rounds │
│ 8. Return final result with all issues and fix plan │
└─────────────────────────────────────────────────────────────┘
Client Requirements
| Capability | Required | Notes |
|---|---|---|
| MCP Sampling | Yes | Server-initiated LLM requests |
| createMessage | Yes | Part of Sampling capability |
Client Support:
- MCP Sampling capability required
- Check your client's documentation for support
Tool: elenchus_auto_verify
Inputs:
target(string, required): Target path to verifyrequirements(string, required): Verification requirementsworkingDir(string, required): Working directoryconfig(object, optional):maxRounds: Maximum rounds (default: 10)maxTokens: Max tokens per request (default: 4000)stopOnCritical: Stop on CRITICAL issue (default: false)minRounds: Min rounds before convergence (default: 2)enableProgress: Stream progress updates (default: true)modelHint:"fast"|"balanced"|"thorough"includePreAnalysis: Include static analysis (default: true)autoConsolidate: Generate fix plan (default: true)
Returns: Session ID, final status, all issues, and optional consolidated fix plan.
Example:
elenchus_auto_verify({
target: "src/auth",
requirements: "Security audit for authentication module",
workingDir: "/path/to/project",
config: {
maxRounds: 10,
modelHint: "thorough",
autoConsolidate: true
}
})
Tool: elenchus_get_auto_loop_status
Inputs:
sessionId(string, required): Session ID to query
Returns: Current round, status, issues found so far, convergence info.
Comparison: Manual vs Automatic
| Aspect | Manual (elenchus_submit_round) |
Automatic (elenchus_auto_verify) |
|---|---|---|
| Control | Full control over each round | Server-controlled |
| Intervention | Can modify between rounds | No intervention |
| Client Work | Parse prompts, call LLM, format response | Single tool call |
| Best For | Custom workflows, debugging | Standard verification |
Issue Lifecycle
Issues transition through states:
RAISED → CHALLENGED → RESOLVED
↓
DISMISSED (false positive)
↓
MERGED (combined)
↓
SPLIT (divided)
Issue States
| Status | Description |
|---|---|
RAISED |
Initially discovered by Verifier |
CHALLENGED |
Under debate between Verifier and Critic |
RESOLVED |
Fixed and verified |
DISMISSED |
Invalidated as false positive |
MERGED |
Combined with another issue |
SPLIT |
Divided into multiple issues |
Critic Verdicts
| Verdict | Meaning |
|---|---|
VALID |
Issue is legitimate |
INVALID |
False positive |
PARTIAL |
Partially valid, needs refinement |
Convergence Detection
A session converges when ALL criteria are met:
- No CRITICAL or HIGH severity unresolved issues
- Stable for 2+ rounds (no new issues)
- Minimum rounds completed (varies by mode)
- All 5 categories examined
- No recent issue state transitions
- Edge cases documented
- Clean areas explicitly stated (negative assertions)
- High-risk impacted files reviewed
Category Coverage
All 5 categories must be examined:
- SECURITY - Authentication, authorization, injection
- CORRECTNESS - Logic errors, type mismatches
- RELIABILITY - Error handling, resource management
- MAINTAINABILITY - Code structure, documentation
- PERFORMANCE - Efficiency, resource usage
<details> <summary><strong>Edge Case Categories</strong></summary>
Based on OWASP Testing Guide, Netflix Chaos Engineering, Google DiRT:
| # | Category | Example Checks |
|---|---|---|
| 1 | Code-level | Null inputs, boundary values |
| 2 | User Behavior | Double-clicks, concurrent sessions |
| 3 | External Dependencies | Service failures, timeouts |
| 4 | Business Logic | Permission changes, state conflicts |
| 5 | Data State | Legacy data, corruption |
| 6 | Environment | Config drift, resource limits |
| 7 | Scale | Traffic spikes, massive data |
| 8 | Security | Validation bypass, session attacks |
| 9 | Side Effects | Mid-operation changes, partial failures |
</details>
Token Optimization
<details> <summary><strong>Differential Analysis</strong></summary>
Verify only changed files:
{
differentialConfig: {
enabled: true,
baseRef: "main" // Compare against main branch
}
}
</details>
<details> <summary><strong>Response Caching</strong></summary>
Cache previous verification results:
{
cacheConfig: {
enabled: true,
ttlSeconds: 3600 // Cache for 1 hour
}
}
</details>
<details> <summary><strong>Selective Chunking</strong></summary>
Split large files into focused chunks:
{
chunkingConfig: {
enabled: true,
maxChunkSize: 500 // Lines per chunk
}
}
</details>
<details> <summary><strong>Tiered Pipeline</strong></summary>
Start with quick analysis, escalate if needed:
{
pipelineConfig: {
enabled: true,
startTier: "quick" // quick → standard → deep
}
}
</details>
Configuration
Environment Variables
| Variable | Description | Default |
|---|---|---|
ELENCHUS_DATA_DIR |
Custom storage directory | ~/.elenchus |
XDG_DATA_HOME |
XDG base directory (Linux/macOS) | - |
LOCALAPPDATA |
Windows AppData location | - |
Storage Location
Sessions and data are stored in a client-agnostic location:
~/.elenchus/
├── sessions/ # Verification sessions
├── baselines/ # Differential analysis baselines
├── cache/ # Response cache
└── safeguards/ # Quality safeguards data
Priority Order:
$ELENCHUS_DATA_DIR- Explicit override$XDG_DATA_HOME/elenchus- XDG spec%LOCALAPPDATA%\elenchus- Windows~/.elenchus- Default fallback
Custom Storage
# Set custom location
export ELENCHUS_DATA_DIR=/path/to/custom/storage
# Or use XDG spec
export XDG_DATA_HOME=~/.local/share
Session Cleanup
Sessions are preserved as audit records. Manual cleanup:
rm -rf ~/.elenchus/sessions/*
# Or for specific sessions
rm -rf ~/.elenchus/sessions/2026-01-17_*
Architecture
<details> <summary><strong>System Diagram</strong></summary>
┌─────────────────────────────────────────────────────────────────────┐
│ ELENCHUS MCP SERVER │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌──────────────────────────────────────────────────────────────┐ │
│ │ MCP PROTOCOL LAYER │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────────┐ │ │
│ │ │ Tools │ │Resources │ │ Prompts │ │ Notifications│ │ │
│ │ │ (18) │ │ (URI) │ │ (6) │ │ (optional) │ │ │
│ │ └────┬─────┘ └────┬─────┘ └────┬─────┘ └──────────────┘ │ │
│ └───────┼─────────────┼─────────────┼──────────────────────────┘ │
│ │ │ │ │
│ ┌───────┴─────────────┴─────────────┴──────────────────────────┐ │
│ │ CORE MODULES │ │
│ │ Session Manager │ Context Manager │ Mediator System │ │
│ │ Role Enforcement │ Issue Lifecycle │ Pipeline (Tiered) │ │
│ └───────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──────────────────┐ │
│ │ STORAGE │ │
│ │ ~/.elenchus/ │ │
│ └──────────────────┘ │
└─────────────────────────────────────────────────────────────────────┘
</details>
Module Responsibilities
| Module | Purpose |
|---|---|
| Session Manager | Create, persist, and manage verification sessions |
| Context Manager | Collect and organize target files and dependencies |
| Mediator System | Build dependency graphs, detect issues, trigger interventions |
| Role Enforcement | Ensure Verifier↔Critic alternation, validate compliance |
| Issue Lifecycle | Track issue states from RAISED to RESOLVED |
| Pipeline | Tiered verification (quick → standard → deep) |
Security
Security Model
Elenchus operates with the following security considerations:
- No Code Execution: Elenchus does NOT execute the code it verifies. It performs static analysis only.
- Local Storage: All session data is stored locally in
~/.elenchus/. No data is sent to external servers. - Path Validation: All file paths are validated to prevent path traversal attacks.
- No Secrets in Output: Tool outputs are sanitized to avoid exposing sensitive data.
Permissions
Elenchus requires:
- Read access to target files for verification
- Write access to
~/.elenchus/for session storage
Reporting Security Issues
Please report security vulnerabilities via GitHub Security Advisories.
Troubleshooting
Common Issues
<details> <summary><strong>Server not found / Tools not available</strong></summary>
Symptom: Your MCP client doesn't recognize Elenchus commands or tools.
Solutions:
- Verify installation in your client's MCP settings
- Restart your MCP client after adding the server
- Check config syntax (JSON must be valid)
- Ensure Node.js ≥18 is installed:
node --version
</details>
<details> <summary><strong>Session not found</strong></summary>
Symptom: Error "Session not found: xxx"
Solutions:
- List active sessions:
Read elenchus://sessions/ - Sessions may have been cleaned up - start a new session
- Verify session ID is correct (check for typos)
</details>
<details> <summary><strong>MCP Sampling not supported</strong></summary>
Symptom: elenchus_auto_verify fails with sampling error.
Solutions:
- Check if your MCP client supports MCP Sampling capability
- Use manual verification instead:
elenchus_start_session(...) elenchus_submit_round(...)
</details>
<details> <summary><strong>Permission denied errors</strong></summary>
Symptom: Cannot read files or write sessions.
Solutions:
- Check file permissions on target directory
- Verify write access to
~/.elenchus/:ls -la ~/.elenchus/ - Try custom storage location:
export ELENCHUS_DATA_DIR=/tmp/elenchus
</details>
<details> <summary><strong>Role compliance rejection</strong></summary>
Symptom: Round rejected due to compliance score.
Solutions:
- Check current role requirements:
elenchus_get_role_prompt({ role: "verifier" }) - Lower minimum compliance score:
elenchus_update_role_config({ sessionId: "...", minComplianceScore: 50, strictMode: false }) - Ensure role alternation (Verifier → Critic → Verifier)
</details>
Debugging
Use MCP Inspector for debugging:
npm run inspector
# or
npx @modelcontextprotocol/inspector node dist/index.js
Getting Help
- Issues: GitHub Issues
- Discussions: GitHub Discussions
Development
Build Commands
npm run build # Compile TypeScript to dist/
npm run dev # Watch mode with auto-rebuild
npm run start # Run the compiled server
npm run inspector # Launch MCP Inspector for debugging
Project Structure
elenchus-mcp/
├── src/
│ ├── index.ts # Entry point, MCP server setup
│ ├── tools/ # Tool definitions and handlers
│ ├── resources/ # Resource definitions
│ ├── prompts/ # Prompt templates
│ ├── types/ # TypeScript interfaces
│ ├── state/ # Session and context management
│ ├── mediator/ # Dependency analysis
│ ├── roles/ # Role enforcement
│ ├── config/ # Configuration constants
│ ├── cache/ # Response caching
│ ├── chunking/ # Code chunking
│ ├── diff/ # Differential analysis
│ ├── pipeline/ # Tiered verification
│ └── safeguards/ # Quality safeguards
├── dist/ # Compiled output
├── package.json
├── tsconfig.json
└── README.md
Contributing
Contributions welcome! Please:
- Fork the repository
- Create a feature branch
- Submit a pull request
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.