Elasticsearch/OpenSearch MCP Server

Elasticsearch/OpenSearch MCP Server

An MCP server that enables interaction with Elasticsearch and OpenSearch clusters for searching documents and managing indices. It provides tools for cluster health monitoring, index configuration, and general API requests.

Category
Visit Server

README

Elasticsearch/OpenSearch MCP Server

smithery badge

MseeP.ai Security Assessment Badge

Overview

A Model Context Protocol (MCP) server implementation that provides Elasticsearch and OpenSearch interaction. This server enables searching documents, analyzing indices, and managing cluster through a set of tools.

Features

General Operations

  • general_api_request: Perform a general HTTP API request. Use this tool for any Elasticsearch/OpenSearch API that does not have a dedicated tool.

Index Operations

  • list_indices: List all indices.
  • get_index: Returns information (mappings, settings, aliases) about one or more indices.
  • create_index: Create a new index.
  • delete_index: Delete an index.

Document Operations

  • search_documents: Search for documents.
  • index_document: Creates or updates a document in the index.
  • get_document: Get a document by ID.
  • delete_document: Delete a document by ID.
  • delete_by_query: Deletes documents matching the provided query.

Cluster Operations

  • get_cluster_health: Returns basic information about the health of the cluster.
  • get_cluster_stats: Returns high-level overview of cluster statistics.

Alias Operations

  • list_aliases: List all aliases.
  • get_alias: Get alias information for a specific index.
  • put_alias: Create or update an alias for a specific index.
  • delete_alias: Delete an alias for a specific index.

Configure Environment Variables

Copy the .env.example file to .env and update the values accordingly.

Start Elasticsearch/OpenSearch Cluster

Start the Elasticsearch/OpenSearch cluster using Docker Compose:

# For Elasticsearch
docker-compose -f docker-compose-elasticsearch.yml up -d

# For OpenSearch
docker-compose -f docker-compose-opensearch.yml up -d

The default Elasticsearch username is elastic and password is test123. The default OpenSearch username is admin and password is admin.

You can access Kibana/OpenSearch Dashboards from http://localhost:5601.

Stdio

Option 1: Using uvx

Using uvx will automatically install the package from PyPI, no need to clone the repository locally. Add the following configuration to 's config file claude_desktop_config.json.

// For Elasticsearch
{
  "mcpServers": {
    "elasticsearch-mcp-server": {
      "command": "uvx",
      "args": [
        "elasticsearch-mcp-server"
      ],
      "env": {
        "ELASTICSEARCH_HOSTS": "https://localhost:9200",
        "ELASTICSEARCH_USERNAME": "elastic",
        "ELASTICSEARCH_PASSWORD": "test123"
      }
    }
  }
}

// For OpenSearch
{
  "mcpServers": {
    "opensearch-mcp-server": {
      "command": "uvx",
      "args": [
        "opensearch-mcp-server"
      ],
      "env": {
        "OPENSEARCH_HOSTS": "https://localhost:9200",
        "OPENSEARCH_USERNAME": "admin",
        "OPENSEARCH_PASSWORD": "admin"
      }
    }
  }
}

Option 2: Using uv with local development

Using uv requires cloning the repository locally and specifying the path to the source code. Add the following configuration to Claude Desktop's config file claude_desktop_config.json.

// For Elasticsearch
{
  "mcpServers": {
    "elasticsearch-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "path\\to_folder_proyect\\elasticsearch_mcp_server",
        "run",
        "elasticsearch-mcp-server"
      ],
      "env": {
        "ELASTICSEARCH_HOSTS": "https://localhost:9200",
        "ELASTICSEARCH_USERNAME": "elastic",
        "ELASTICSEARCH_PASSWORD": "test123"
      }
    }
  }
}

// For OpenSearch
{
  "mcpServers": {
    "opensearch-mcp-server": {
      "command": "uv",
      "args": [
        "--directory",
        "path\\to_folder_proyect\\elasticsearch-mcp-server",
        "run",
        "opensearch-mcp-server"
      ],
      "env": {
        "OPENSEARCH_HOSTS": "https://localhost:9200",
        "OPENSEARCH_USERNAME": "admin",
        "OPENSEARCH_PASSWORD": "admin",
        "OPENSEARCH_VERIFY_CERTS": "false"
      }
    }
  }
}

SSE

Option 1: Using uvx

# export environment variables
export ELASTICSEARCH_HOSTS="https://localhost:9200"
export ELASTICSEARCH_USERNAME="elastic"
export ELASTICSEARCH_PASSWORD="test123"

# By default, the SSE MCP server will serve on http://127.0.0.1:8000/sse
uvx elasticsearch-mcp-server --transport sse

# The host, port, and path can be specified using the --host, --port, and --path options
uvx elasticsearch-mcp-server --transport sse --host 0.0.0.0 --port 8000 --path /sse

Option 2: Using uv


py -m pip install u #LOCAL MACHINE
pip install uv     #VIRTUAL ENV

# By default, the SSE MCP server will serve on http://127.0.0.1:8000/sse
uv run src/server.py elasticsearch-mcp-server --transport sse
uv run src/server.py opensearch-mcp-server --transport sse

# The host, port, and path can be specified using the --host, --port, and --path options
uv run src/server.py elasticsearch-mcp-server --transport sse --host 0.0.0.0 --port 8000 --path /sse
uv run src/server.py opensearch-mcp-server --transport sse --host 0.0.0.0 --port 8000 --path /sse
opensearch-mcp-server

Streamable HTTP

Option 1: Using uvx

# export environment variables
export ELASTICSEARCH_HOSTS="https://localhost:9200"
export ELASTICSEARCH_USERNAME="elastic"
export ELASTICSEARCH_PASSWORD="test123"

# By default, the Streamable HTTP MCP server will serve on http://127.0.0.1:8000/mcp
uvx elasticsearch-mcp-server --transport streamable-http

# The host, port, and path can be specified using the --host, --port, and --path options
uvx elasticsearch-mcp-server --transport streamable-http --host 0.0.0.0 --port 8000 --path /mcp

Option 2: Using uv


py -m pip install u #LOCAL MACHINE
pip install uv     #VIRTUAL ENV
# By default, the Streamable HTTP MCP server will serve on http://127.0.0.1:8000/mcp
uv run src/server.py elasticsearch-mcp-server --transport streamable-http

# The host, port, and path can be specified using the --host, --port, and --path options
uv run src/server.py elasticsearch-mcp-server --transport streamable-http --host 0.0.0.0 --port 8000 --path /mcp
uv run src/server.py opensearch-mcp-server --transport streamable-http --host 0.0.0.0 --port 8000 --path /mcp

License

This project is licensed under the Apache License Version 2.0 - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured