eFax to JSON MCP Server
Converts eFax documents (PDF, TIFF, CCD XML) from OpenText Fax Server Software into structured JSON format with OCR support, metadata extraction, and batch processing capabilities.
README
eFax to JSON MCP Server
A Model Context Protocol (MCP) server that converts eFax documents from OpenText Fax Server Software into structured JSON format. Supports PDF, TIFF, and CCD XML document formats with advanced OCR and metadata extraction capabilities.
Features
Supported Formats
- PDF Documents - Text extraction and OCR for scanned PDFs
- TIFF Images - Multi-page TIFF support with OCR processing
- CCD XML - Clinical Document Architecture parsing
Processing Capabilities
- Intelligent OCR - Tesseract-based text recognition with confidence scoring
- Metadata Extraction - Preserve document properties and fax information
- Batch Processing - Convert multiple documents simultaneously
- Format Validation - Comprehensive document structure validation
- Error Recovery - Robust error handling with detailed reporting
Installation
Prerequisites
- Node.js 18+
- System-level Tesseract OCR installation:
- Ubuntu/Debian:
sudo apt-get install tesseract-ocr - macOS:
brew install tesseract - Windows: Download from UB Mannheim releases
- Ubuntu/Debian:
Setup Steps
-
Create project directory
mkdir efax-mcp-server cd efax-mcp-server -
Initialize and install dependencies
npm init -y npm install @modelcontextprotocol/sdk pdf-parse sharp tesseract.js xml2js npm install -D @types/node @types/pdf-parse @types/xml2js typescript ts-node -
Create directory structure
mkdir -p src/{types,processors,utils} mkdir -p tests/test-files mkdir -p docs -
Add source files (paste the provided code into respective files)
-
Build the project
npm run build
Usage
MCP Client Configuration
Add to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"efax-converter": {
"command": "node",
"args": ["/path/to/efax-mcp-server/dist/server.js"]
}
}
}
Available Tools
1. Convert Single Document
convert_efax_document --filePath "/path/to/document.pdf" --performOCR true
Parameters:
filePath(required) - Path to eFax documentoutputPath(optional) - Custom output JSON pathextractMetadata(default: true) - Extract document metadataperformOCR(default: true) - Enable OCR processingocrLanguage(default: "eng") - OCR language codeincludeRawData(default: false) - Include raw document data
2. Batch Convert Documents
batch_convert_efax --inputDirectory "/path/to/docs" --outputDirectory "/path/to/json"
Parameters:
inputDirectory(required) - Source document directoryoutputDirectory(required) - JSON output directoryfilePattern(default: "*") - File matching patterncontinueOnError(default: true) - Continue on individual failures
3. Validate JSON Output
validate_efax_json --jsonPath "/path/to/output.json"
4. Get File Information
get_file_info --filePath "/path/to/document.pdf"
5. List Supported Formats
list_supported_formats
JSON Output Structure
{
"id": "efax_document_1234567890_abc123",
"source": "efax",
"format": "pdf|tiff|ccd_xml",
"timestamp": "2025-08-04T12:00:00.000Z",
"metadata": {
"originalFileName": "fax_document.pdf",
"fileSize": 2048576,
"pages": 3,
"sender": "John Doe",
"recipient": "Jane Smith",
"faxNumber": "+1-555-123-4567",
"resolution": "1200x1800",
"ocrConfidence": 95.5,
"processingTime": 3500
},
"content": {
"text": "Full extracted text content...",
"pages": [
{
"pageNumber": 1,
"text": "Page 1 text content...",
"confidence": 96.2,
"metadata": {
"width": 1200,
"height": 1800,
"resolution": "1200x1800"
}
}
],
"sections": [
{
"title": "Patient Information",
"content": "Patient details...",
"type": "patient",
"pageNumbers": [1]
}
]
},
"rawData": {
"pdfInfo": {},
"imageMetadata": {}
}
}
Architecture
Modular Design
- Processors: Format-specific conversion logic
- Utilities: Shared validation and file handling
- Types: Comprehensive TypeScript definitions
Processing Pipeline
- File Validation - Format and size checks
- Format Detection - Automatic type identification
- Content Extraction - Text and metadata processing
- OCR Processing - Image-to-text conversion when needed
- Structure Validation - Output quality assurance
- JSON Serialization - Standardized output format
Development
Build Commands
npm run build # Compile TypeScript
npm run dev # Development mode with hot reload
npm run test # Run test suite
npm run clean # Clean build directory
Testing
Place sample documents in tests/test-files/ and run:
npm test
Adding New Formats
- Create processor in
src/processors/ - Add type definitions in
src/types/ - Register in main server
- Update documentation
Performance Considerations
- OCR Processing: CPU-intensive, consider batch size limits
- Memory Usage: Large TIFF files may require significant RAM
- Processing Time: Varies by document complexity and OCR requirements
- Concurrent Processing: Single-threaded OCR worker per instance
Error Handling
The server provides comprehensive error handling:
- File Validation Errors - Invalid paths, unsupported formats
- Processing Errors - OCR failures, corrupted documents
- System Errors - Memory issues, disk space problems
- Validation Errors - Output structure problems
Troubleshooting
Common Issues
OCR Not Working
- Verify Tesseract installation:
tesseract --version - Check language pack availability
- Ensure sufficient system memory
Large File Processing
- Monitor memory usage during conversion
- Consider breaking large batches into smaller chunks
- Verify available disk space for output
Permission Errors
- Check read permissions on input files
- Verify write permissions on output directory
- Ensure MCP server has appropriate file system access
License
MIT License - see LICENSE file for details.
Support
For issues and feature requests, please use the project's issue tracker.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.