Educational Tutor MCP Server
Transforms documentation repositories into interactive educational content and provides standardized access to AI-generated structured courses through MCP protocol. Generates multi-complexity learning paths from docs and enables AI tutoring applications to interact with course content.
README
Educational Tutor
An experimental system that transforms documentation repositories into interactive educational content using AI and the Model Context Protocol (MCP).
š Overview
This project consists of two main components:
- š Course Content Agent - Generates structured learning courses from documentation repositories
- š§ MCP Educational Server - Provides standardized access to course content via MCP protocol
šļø Architecture
Documentation Repository ā Course Content Agent ā Structured Courses ā MCP Server ā AI Tutors
The system processes documentation, creates educational content, and exposes it through standardized tools for AI tutoring applications.
š Project Structure
tutor/
āāā course_content_agent/ # AI-powered course generation from docs
ā āāā main.py # CourseBuilder orchestration
ā āāā modules.py # Core processing logic
ā āāā models.py # Pydantic data models
ā āāā signatures.py # DSPy LLM signatures
ā āāā about.md # š Detailed documentation
āāā mcp_server/ # MCP protocol server for course access
ā āāā main.py # MCP server startup
ā āāā tools.py # Course interaction tools
ā āāā course_management.py # Content processing
ā āāā about.md # š Detailed documentation
āāā course_output/ # Generated course content
āāā nbs/ # Jupyter notebooks for development
āāā pyproject.toml # Project configuration
š Quick Start
1. Install Dependencies and Create Virtual Environment
This project uses uv for fast Python package management.
# Create a virtual environment
python -m uv venv
# Install dependencies in editable mode
.venv/bin/uv pip install -e .
2. Generate Courses from Documentation
# Generate courses from a repository
.venv/bin/uv run python course_content_agent/test.py
Customize for Your Repository: Edit course_content_agent/test.py to change:
- Repository URL (currently uses MCP docs)
- Include/exclude specific folders
- Output directory and caching settings
3. Start MCP Server
# Serve generated courses via MCP protocol
.venv/bin/uv run python -m mcp_server.main
# Or customize course directory
COURSE_DIR=your_course_output .venv/bin/uv run python -m mcp_server.main
4. Test MCP Integration
# Test server capabilities
.venv/bin/uv run python mcp_server/stdio_client.py
š Detailed Documentation
For comprehensive information about each component:
-
Course Content Agent: See
course_content_agent/about.md- AI-powered course generation
- DSPy signatures and multiprocessing
- Document analysis and learning path creation
-
MCP Educational Server: See
mcp_server/about.md- MCP protocol implementation
- Course interaction tools
- Integration with AI assistants
š MCP Integration with Cursor
To use the educational tutor MCP server with Cursor, create a .cursor/mcp.json file in your project root:
{
"mcpServers": {
"educational-tutor": {
"command": "/path/to/tutor/project/.venv/bin/uv",
"args": [
"--directory",
"/path/to/tutor/project",
"run",
"mcp_server/main.py"
],
"env": {
"COURSE_DIR": "/path/to/tutor/project/course_output"
}
}
}
}
Setup Steps:
- Create a virtual environment:
python -m uv venv - Install dependencies:
.venv/bin/uv pip install -e . - Update the
commandpath and the path inargsto your project directory. - Restart Cursor or reload the window.
- Use
@educational-tutorin Cursor chat to access course tools.
š§ Development Status
Current Status: ā Functional MVP
- Course generation from documentation repositories
- MCP server for standardized content access
- Multi-complexity course creation (beginner/intermediate/advanced)
Future Enhancements:
- Support for diverse content sources (websites, videos)
- Advanced search and recommendation systems
- Integration with popular AI platforms
š ļø Technology Stack
- AI Framework: DSPy for LLM orchestration
- Content Processing: Multiprocessing for performance
- Protocol: Model Context Protocol (MCP) for standardization
- Models: Gemini 2.5 Flash for content generation
- Data: Pydantic models for type safety
š License
This project is experimental and intended for educational and research purposes.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.