edinet-mcp

edinet-mcp

Provides programmatic access to Japan's EDINET system to search for listed companies and retrieve annual or quarterly financial reports. It parses XBRL filings into structured data, enabling AI assistants to analyze balance sheets, income statements, and cash flows.

Category
Visit Server

README

edinet-mcp

EDINET XBRL parsing library and MCP server for Japanese financial data.

PyPI Python License

What is this?

edinet-mcp provides programmatic access to Japan's EDINET financial disclosure system. It normalizes XBRL filings across accounting standards (J-GAAP / IFRS / US-GAAP) into canonical Japanese labels and exposes them as an MCP server for AI assistants.

  • Search 5,000+ listed Japanese companies
  • Retrieve annual/quarterly financial reports (有価証券報告書, 四半期報告書)
  • Automatic normalization: stmt["売上高"] works regardless of accounting standard
  • Financial metrics (ROE, ROA, profit margins) and year-over-year comparison
  • Parse XBRL into Polars/pandas DataFrames (BS, PL, CF)
  • MCP server with 7 tools for Claude Desktop and other AI tools

Quick Start

Installation

pip install edinet-mcp
# or
uv add edinet-mcp

Get an API Key

Register (free) at EDINET and set:

export EDINET_API_KEY=your_key_here

30-Second Example

from edinet_mcp import EdinetClient

client = EdinetClient()

# Search for Toyota
companies = client.search_companies("トヨタ")
print(companies[0].name, companies[0].edinet_code)
# トヨタ自動車株式会社 E02144

# Get normalized financial statements
stmt = client.get_financial_statements("E02144", period="2025")

# Dict-like access — works for J-GAAP, IFRS, and US-GAAP
revenue = stmt.income_statement["売上高"]
print(revenue)  # {"当期": 45095325000000, "前期": 37154298000000}

# See all available line items
print(stmt.income_statement.labels)
# ["売上高", "売上原価", "売上総利益", "営業利益", ...]

# Export as DataFrame
print(stmt.income_statement.to_polars())

Financial Metrics

from edinet_mcp import EdinetClient, calculate_metrics

client = EdinetClient()
stmt = client.get_financial_statements("E02144", period="2025")
metrics = calculate_metrics(stmt)
print(metrics["profitability"])
# {"売上総利益率": "25.30%", "営業利益率": "11.87%", "ROE": "12.50%", ...}

MCP Server (for Claude Desktop)

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

{
  "mcpServers": {
    "edinet": {
      "command": "uvx",
      "args": ["edinet-mcp", "serve"],
      "env": {
        "EDINET_API_KEY": "your_key_here"
      }
    }
  }
}

Then ask Claude: "トヨタの最新の営業利益を教えて"

Available MCP Tools

Tool Description
search_companies 企業名・証券コード・EDINETコードで検索
get_filings 指定期間の開示書類一覧を取得
get_financial_statements 正規化された財務諸表 (BS/PL/CF) を取得
get_financial_metrics ROE・ROA・利益率等の財務指標を計算
compare_financial_periods 前年比較(増減額・増減率)
list_available_labels 取得可能な財務科目の一覧
get_company_info 企業の詳細情報を取得

Note: The period parameter is the filing year, not the fiscal year. Japanese companies with a March fiscal year-end file annual reports in June of the following year (e.g., FY2024 → filed 2025 → period="2025").

CLI

# Search companies
edinet-mcp search トヨタ

# Fetch income statement
edinet-mcp statements -c E02144 -p 2024

# Start MCP server
edinet-mcp serve

API Reference

EdinetClient

client = EdinetClient(
    api_key="...",        # or EDINET_API_KEY env var
    cache_dir="~/.cache/edinet-mcp",
    rate_limit=0.5,       # requests per second
)

# Search
companies: list[Company] = client.search_companies("query")
company: Company = client.get_company("E02144")

# Filings
filings: list[Filing] = client.get_filings(
    start_date="2024-01-01",
    edinet_code="E02144",
    doc_type="annual_report",
)

# Financial statements
stmt: FinancialStatement = client.get_financial_statements(
    edinet_code="E02144",
    period="2024",
)
df = stmt.income_statement.to_polars()  # Polars DataFrame
df = stmt.income_statement.to_pandas()  # pandas DataFrame (optional dep)

StatementData

Each financial statement (BS, PL, CF) is a StatementData object with dict-like access:

# Dict-like access by Japanese label
stmt.income_statement["売上高"]       # → {"当期": 45095325, "前期": 37154298}
stmt.income_statement.get("営業利益") # → {"当期": 5352934} or None
stmt.income_statement.labels          # → ["売上高", "営業利益", ...]

# DataFrame export
stmt.balance_sheet.to_polars()    # → polars.DataFrame
stmt.balance_sheet.to_pandas()    # → pandas.DataFrame (requires pandas)
stmt.balance_sheet.to_dicts()     # → list[dict]
len(stmt.balance_sheet)           # number of line items

# Raw XBRL data preserved
stmt.income_statement.raw_items   # original pre-normalization data

Normalization

edinet-mcp automatically normalizes XBRL element names across accounting standards:

Accounting Standard XBRL Element Normalized Label
J-GAAP NetSales 売上高
IFRS Revenue 売上高
US-GAAP Revenues 売上高

Mappings are defined in taxonomy.yaml — 57 items covering BS (23), PL (17), and CF (17). Add new mappings by editing the YAML file, no code changes needed.

from edinet_mcp import get_taxonomy_labels

# Discover available labels
labels = get_taxonomy_labels("income_statement")
# [{"id": "revenue", "label": "売上高", "label_en": "Revenue"}, ...]

Architecture

EDINET API → Parser (XBRL/TSV) → Normalizer (taxonomy.yaml) → MCP Server
                                        ↓
                              StatementData["売上高"]
                              calculate_metrics(stmt)
                              compare_periods(stmt)

Development

git clone https://github.com/ajtgjmdjp/edinet-mcp
cd edinet-mcp
uv sync --extra dev
uv run pytest -v           # 85 tests
uv run ruff check src/

Data Attribution

This project uses data from EDINET (Electronic Disclosure for Investors' NETwork), operated by the Financial Services Agency of Japan (金融庁). EDINET data is provided under the Public Data License 1.0.

Related Projects

  • edinet2dataset — Sakana AI's EDINET XBRL→JSON tool
  • EDINET-Bench — Financial classification benchmark
  • jfinqa — Japanese financial QA benchmark (companion project)

License

Apache-2.0. See NOTICE for third-party attributions.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured