edinet-mcp
Provides programmatic access to Japan's EDINET system to search for listed companies and retrieve annual or quarterly financial reports. It parses XBRL filings into structured data, enabling AI assistants to analyze balance sheets, income statements, and cash flows.
README
edinet-mcp
EDINET XBRL parsing library and MCP server for Japanese financial data.
What is this?
edinet-mcp provides programmatic access to Japan's EDINET financial disclosure system. It normalizes XBRL filings across accounting standards (J-GAAP / IFRS / US-GAAP) into canonical Japanese labels and exposes them as an MCP server for AI assistants.
- Search 5,000+ listed Japanese companies
- Retrieve annual/quarterly financial reports (有価証券報告書, 四半期報告書)
- Automatic normalization:
stmt["売上高"]works regardless of accounting standard - Financial metrics (ROE, ROA, profit margins) and year-over-year comparison
- Parse XBRL into Polars/pandas DataFrames (BS, PL, CF)
- MCP server with 7 tools for Claude Desktop and other AI tools
Quick Start
Installation
pip install edinet-mcp
# or
uv add edinet-mcp
Get an API Key
Register (free) at EDINET and set:
export EDINET_API_KEY=your_key_here
30-Second Example
from edinet_mcp import EdinetClient
client = EdinetClient()
# Search for Toyota
companies = client.search_companies("トヨタ")
print(companies[0].name, companies[0].edinet_code)
# トヨタ自動車株式会社 E02144
# Get normalized financial statements
stmt = client.get_financial_statements("E02144", period="2025")
# Dict-like access — works for J-GAAP, IFRS, and US-GAAP
revenue = stmt.income_statement["売上高"]
print(revenue) # {"当期": 45095325000000, "前期": 37154298000000}
# See all available line items
print(stmt.income_statement.labels)
# ["売上高", "売上原価", "売上総利益", "営業利益", ...]
# Export as DataFrame
print(stmt.income_statement.to_polars())
Financial Metrics
from edinet_mcp import EdinetClient, calculate_metrics
client = EdinetClient()
stmt = client.get_financial_statements("E02144", period="2025")
metrics = calculate_metrics(stmt)
print(metrics["profitability"])
# {"売上総利益率": "25.30%", "営業利益率": "11.87%", "ROE": "12.50%", ...}
MCP Server (for Claude Desktop)
Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"edinet": {
"command": "uvx",
"args": ["edinet-mcp", "serve"],
"env": {
"EDINET_API_KEY": "your_key_here"
}
}
}
}
Then ask Claude: "トヨタの最新の営業利益を教えて"
Available MCP Tools
| Tool | Description |
|---|---|
search_companies |
企業名・証券コード・EDINETコードで検索 |
get_filings |
指定期間の開示書類一覧を取得 |
get_financial_statements |
正規化された財務諸表 (BS/PL/CF) を取得 |
get_financial_metrics |
ROE・ROA・利益率等の財務指標を計算 |
compare_financial_periods |
前年比較(増減額・増減率) |
list_available_labels |
取得可能な財務科目の一覧 |
get_company_info |
企業の詳細情報を取得 |
Note: The
periodparameter is the filing year, not the fiscal year. Japanese companies with a March fiscal year-end file annual reports in June of the following year (e.g., FY2024 → filed 2025 →period="2025").
CLI
# Search companies
edinet-mcp search トヨタ
# Fetch income statement
edinet-mcp statements -c E02144 -p 2024
# Start MCP server
edinet-mcp serve
API Reference
EdinetClient
client = EdinetClient(
api_key="...", # or EDINET_API_KEY env var
cache_dir="~/.cache/edinet-mcp",
rate_limit=0.5, # requests per second
)
# Search
companies: list[Company] = client.search_companies("query")
company: Company = client.get_company("E02144")
# Filings
filings: list[Filing] = client.get_filings(
start_date="2024-01-01",
edinet_code="E02144",
doc_type="annual_report",
)
# Financial statements
stmt: FinancialStatement = client.get_financial_statements(
edinet_code="E02144",
period="2024",
)
df = stmt.income_statement.to_polars() # Polars DataFrame
df = stmt.income_statement.to_pandas() # pandas DataFrame (optional dep)
StatementData
Each financial statement (BS, PL, CF) is a StatementData object with dict-like access:
# Dict-like access by Japanese label
stmt.income_statement["売上高"] # → {"当期": 45095325, "前期": 37154298}
stmt.income_statement.get("営業利益") # → {"当期": 5352934} or None
stmt.income_statement.labels # → ["売上高", "営業利益", ...]
# DataFrame export
stmt.balance_sheet.to_polars() # → polars.DataFrame
stmt.balance_sheet.to_pandas() # → pandas.DataFrame (requires pandas)
stmt.balance_sheet.to_dicts() # → list[dict]
len(stmt.balance_sheet) # number of line items
# Raw XBRL data preserved
stmt.income_statement.raw_items # original pre-normalization data
Normalization
edinet-mcp automatically normalizes XBRL element names across accounting standards:
| Accounting Standard | XBRL Element | Normalized Label |
|---|---|---|
| J-GAAP | NetSales |
売上高 |
| IFRS | Revenue |
売上高 |
| US-GAAP | Revenues |
売上高 |
Mappings are defined in taxonomy.yaml — 57 items covering BS (23), PL (17), and CF (17). Add new mappings by editing the YAML file, no code changes needed.
from edinet_mcp import get_taxonomy_labels
# Discover available labels
labels = get_taxonomy_labels("income_statement")
# [{"id": "revenue", "label": "売上高", "label_en": "Revenue"}, ...]
Architecture
EDINET API → Parser (XBRL/TSV) → Normalizer (taxonomy.yaml) → MCP Server
↓
StatementData["売上高"]
calculate_metrics(stmt)
compare_periods(stmt)
Development
git clone https://github.com/ajtgjmdjp/edinet-mcp
cd edinet-mcp
uv sync --extra dev
uv run pytest -v # 85 tests
uv run ruff check src/
Data Attribution
This project uses data from EDINET (Electronic Disclosure for Investors' NETwork), operated by the Financial Services Agency of Japan (金融庁). EDINET data is provided under the Public Data License 1.0.
Related Projects
- edinet2dataset — Sakana AI's EDINET XBRL→JSON tool
- EDINET-Bench — Financial classification benchmark
- jfinqa — Japanese financial QA benchmark (companion project)
License
Apache-2.0. See NOTICE for third-party attributions.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.