Dremio MCP Server

Dremio MCP Server

Enables LLMs to interact with Dremio data platforms for querying, analyzing data patterns, and exploring metadata through natural language, with support for both local and production Kubernetes deployments.

Category
Visit Server

README

Dremio MCP server

Table of Contents

Introduction

This repo provides an Model Context Protocol (MCP) server for easing LLM integration with Dremio. If you are new to MCP and MCP Servers take our Dremio MCP Server course on Dremio University (DremioU). If you are familiar with these concepts already please proceed below.

%%{init:
{
    "themeVariables": {
        "fontFamily": "Inter"
    }
}
}%%

architecture-beta
    group ws(cloud)[Workstation]

    service cf(database)[Config] in ws
    service mcp(server)[Dremio MCP Server] in ws
    service claude(cloud)[Claude Desktop] in ws

    mcp:B <-- T:cf
    claude:R <--> L:mcp


    group dremio(cloud)[Dremio]
    service de(server)[Dremio Engine] in dremio

    mcp:R <--> L:de

Installation

The Dremio MCP server can be deployed in two ways:

Remote / Streaming HTTP Deployment

For production deployments in Kubernetes environments, use the Helm chart:

๐Ÿ“ฆ Helm Chart Documentation

Quick Start with Helm

# Build Docker image
docker build -t dremio-mcp:0.1.0 .

# Production deployment with OAuth (Recommended)
helm install my-dremio-mcp ./helm/dremio-mcp \
  --set dremio.uri=https://dremio.example.com:9047

# Development/Testing with PAT (Not for production)
helm install my-dremio-mcp ./helm/dremio-mcp \
  --set dremio.uri=https://dremio.example.com:9047 \
  --set dremio.pat=<your-pat>

Key Features

  • โœ… OAuth + External Token Provider authentication (recommended for production)
  • โœ… Streaming HTTP mode for web-based deployments
  • โœ… Horizontal Pod Autoscaling for scalability
  • โœ… Prometheus metrics integration
  • โœ… Ingress support with TLS/SSL
  • โœ… Security best practices (non-root, read-only filesystem)

Documentation


Local Installation (Desktop/Development)

The MCP server runs locally on the machine that runs the LLM frontend (eg Claude). The installation steps are simple:

  1. Clone or download this repository.
  2. Install the uv package manager (note that the MCP server requires python 3.11 or later)
  • If you install this for the first time, restart your terminal at the end of the install
  1. Ensure that you have python installed by running the command below. It should show python 3.11 or later (If you don't have python installed, follow the instructions here OR simply run uv python install)
$ uv python find
  1. Do a sanity check by running the command and validating the output as shown below.
# cd <toplevel git dir> or add `--directory <toplevel git dir>`
# to the command below

$ uv run dremio-mcp-server --help

 Usage: dremio-mcp-server [OPTIONS] COMMAND [ARGS]...

โ•ญโ”€ Options โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ --install-completion            Install completion for the current shell.        โ”‚
โ”‚ --show-completion               Show completion for the current shell, to copy   โ”‚
โ”‚                                 it or customize the installation.                โ”‚
โ”‚ --help                -h        Show this message and exit.                      โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ
โ•ญโ”€ Commands โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
โ”‚ run      Run the DremioAI MCP server                                             โ”‚
โ”‚ tools    Support for testing tools directly                                      โ”‚
โ”‚ config   Configuration management                                                โ”‚
โ•ฐโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ

Initial setup

There are two configurations necessary before the MCP server can be invoked.

  1. The server config file: This will cover the details of connecting and communicating with Dremio
  2. The LLM config file: This covers configuring the LLM desktop app (Claude for now) to make it aware of the MCP server

Quick start

The quickest way to do this setup is -

  1. Create the dremio config file as outlined below and be prepared with these values
$ uv run dremio-mcp-server config create dremioai \
    --uri <dremio uri> \
    # the endpoint portion of the URL for your environment
    --pat <dremio pat> \
    # https://docs.dremio.com/current/security/authentication/personal-access-tokens/#using-a-pat
    # required for cloud: add your project ID if setting up for dremio cloud
    # --project-id <dremio project id>

Note: the uri is api endpoint associated with your environment:

  • For Dremio cloud based in the US region (https://app.dremio.cloud) use https://api.dremio.cloud or use the short hand prod
  • For Dremio cloud based in the EMEA region (https://app.eu.dremio.cloud) use https://api.eu.dremio.cloud or use the short hand prodemea
  • For SW/K8S deployments use https://<coordinatorโ€‘host>:<9047 or custom port>

Note: For security purposes, if you don't want the PAT to leak into your shell history file, create a file with your PAT in it and give it as an argument to the dremio config.

Example:

$ uv run dremio-mcp-server config create dremioai \
    --uri <dremio uri> \
    --pat @/path/to/tokenfile \
  1. Download and install Claude Desktop (Claude)

Note: Claude has system requirements, such as node.js, please validate your system requirements with Claude official documentation.

  1. Create the Claude config file using
$ uv run dremio-mcp-server config create claude
  1. Validate the config files using
$ uv run dremio-mcp-server config list --type claude

Default config file: '/Users/..../Library/Application Support/Claude/claude_desktop_config.json' (exists = True)
{
    'globalShortcut': '',
    'mcpServers': {
        'Dremio': {
            'command': '/opt/homebrew/Cellar/uv/0.6.14/bin/uv',
            'args': [
                'run',
                '--directory',
                '...../dremio-mcp',
                'dremio-mcp-server',
                'run'
            ]
        }
    }
}

$ uv run dremio-mcp-server config list --type dremioai
Default config file: /Users/..../.config/dremioai/config.yaml (exists = True)
dremio:
  enable_search: false
  pat: ....
  uri: ....
tools:
  server_mode: FOR_DATA_PATTERNS

You are done!. You can start Claude and start using the MCP server

Demo (Local install)

Demo

The rest of the documentation below provides details of the config files


Configuration details

MCP server config file

This file is located by default at $HOME/.config/dremioai/config.yaml but can be overriden using the --cfg option at runtime for dremio-mcp-server

Format

# The dremio section contains 3 main things - the URI to connect, PAT to use
# and optionally the project_id if using with Dremio Cloud
dremio:
    uri: https://.... # the Dremio URI
    pat: "@~/ws/tokens/idl.token" # PAT can be put in a file and used here with @ prefix
    project_id: <string> Project ID required for Dremio Cloud
    enable_search: <bool> # Optional: Enable semantic search
    allow_dml: <bool> # Optional: Allow MCP Server to create views in Dremio
tools:
    server_mode: FOR_DATA_PATTERNS # the serverm

# Optionally the MCP server can also connect and use a prometheus configuration if it
# has been enabled for your Dremio cluster (typically useful for SW installations)
#prometheus:
#uri: ...
#token: ...

Modes

There are 3 modes

  1. FOR_DATA_PATTERNS - the normal mode where MCP server will allow LLM to look at tables and data to allow pattern discovery and other use cases
  2. FOR_SELF - a mode which allows the MCP server to introspect Dremio system, including workload analysis and so on.
  3. FOR_PROMETHEUS - a mode that allow MCP server to connect to your prometheus setup, if one exists, to enhance insights with Dremio related metrics

Multiple modes can be specified with separated by ,

The LLM (Claude) config file

Note: This is applicable only for local installs

To setup the Claude config file (refer to this as an example) edit the Claude desktop config file

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json

And then add this section

{
  "globalShortcut": "",
  "mcpServers": {
    "Dremio": {
      "command": "uv",
      "args": [
        "run",
        "--directory", "<toplevel git directory>"
        "dremio-mcp-server",
        "run"
      ]
    }
  }
}

This will pickup the default location of MCP server config file. It can also be passed in the args section above as "--config-file", "<custom config file>" after run

Logging

The Dremio MCP server automatically writes log files to platform-specific directories following operating system conventions. This helps with troubleshooting and monitoring the server's operation.

Log File Locations

The log files are stored in the following locations based on your operating system:

Linux

  • Directory: ~/.local/share/dremioai/logs/
  • Full path: ~/.local/share/dremioai/logs/dremioai.log
  • XDG compliance: Respects $XDG_DATA_HOME environment variable if set

macOS

  • Directory: ~/Library/Logs/dremioai/
  • Full path: ~/Library/Logs/dremioai/dremioai.log

Windows

  • Directory: %LOCALAPPDATA%\dremioai\logs\
  • Full path: %LOCALAPPDATA%\dremioai\logs\dremioai.log
  • Typical location: C:\Users\<username>\AppData\Local\dremioai\logs\dremioai.log

Controlling File Logging

By default, the MCP server logs to the logfile mentioned above. To control it further, you can use the following environment variables and command line options:

  1. Use JSON format: JSON_LOGGING=1 or pass --enable-json-logging for structured JSON logs
  2. Disable file logging: pass --no-log-to-file to disable writing logs to file

Example:

$ uv run dremio-mcp-server run --no-log-to-file --enable-json-logging

# OR 

$ uv run dremio-mcp-server run --enable-json-logging

The log directory is automatically created if it doesn't exist, so no manual setup is required.

Further Documentation

  1. Architecture: Detailed overview of the Dremio MCP server architecture, including component interactions and data flows.

  2. Tools: Comprehensive guide to available tools, including:

    • Tool categories and types
    • Usage examples
    • Development guidelines
    • Integration support
  3. Settings: Complete configuration reference covering:

    • Dremio connection settings
    • Tool configurations
    • Framework integrations
    • Environment variables
  4. Remote HTTP streaming / Helm Chart

Additional Information

This repository is intended to be open source software that encourages contributions of any kind, like adding features, reporting issues and contributing fixes. This is not a part of Dremio product support.

Testing

The project uses pytest for testing. To run the tests:

# Run all tests
$ uv run pytest tests

GitHub Actions automatically runs tests on pull requests and pushes to the main branch.

Contributing

Please see our Contributing Guide for details on:

  • Setting up your development environment
  • Making contributions
  • Code style guidelines
  • Documentation requirements
  • Running tests

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured