Documentation MCP Server

Documentation MCP Server

Generates professional documentation for multi-language codebases with deep AST-based code analysis, supporting Docusaurus, MkDocs, and Sphinx frameworks. Includes API documentation generation, PDF export, OpenAPI spec generation, and sales-ready documentation for code marketplaces.

Category
Visit Server

README

📚 Documentation MCP Server

Ein Model Context Protocol (MCP) Server zum Generieren professioneller Dokumentationen mit Unterstützung für mehrere Frameworks.

✨ Features

  • 🔍 Deep Code Analysis - AST-basierte Multi-Language Analysis
    • TypeScript/JavaScript: TypeScript Compiler API
    • Python: Native Python AST module
    • Go: Go parser & AST
    • PHP: Regex-basierte Analyse + PHP 8+ Features
    • Extrahiert Klassen, Funktionen, Interfaces, Methoden, Properties
    • PHP 8+: Enums, Traits, Attributes
    • Erfasst JSDoc/Docstrings/Go Doc/PHPDoc und berechnet Dokumentations-Coverage
    • Analysiert Imports/Exports und Module-Dependencies
  • 🌍 Multi-Language Projects - Automatische Erkennung und parallele Analyse mehrerer Sprachen
  • 📊 Projekt-Analyse - Automatische Code-Analyse für TypeScript, JavaScript, Python, Go, PHP
  • 🏗️ Struktur-Generierung - Erstellt komplette Dokumentations-Gerüste
  • ✍️ Seiten-Editor - Erstellt und bearbeitet einzelne Dokumentationsseiten
  • 📖 API-Dokumentation - Generiert API-Docs aus Code-Kommentaren
  • 🌐 Static Site Builder - Baut statische Websites für Hosting
  • 📄 PDF-Export - Konvertiert Dokumentation zu PDF
  • 👀 Live-Preview - Lokaler Entwicklungsserver

🛠️ Unterstützte Frameworks

  • Docusaurus (React-basiert, modern, verschiedene Templates)
  • MkDocs (Python-basiert, Markdown-fokussiert, einfach)
  • Sphinx (Python, sehr mächtig, für komplexe Projekte)

🚀 Quick Start

  1. Verzeichnisse erstellen:

    mkdir src
    mkdir src\tools
    
  2. Dependencies installieren:

    npm install
    
  3. Build:

    npm run build
    
  4. MCP Server in Claude Desktop konfigurieren (siehe SETUP.md)

📦 Tools

docs_analyze_project

Analysiert Projekt-Struktur und führt Deep Code Analysis durch.

Parameter:

  • projectPath (string, required) - Pfad zum Projekt
  • language (enum, optional) - Programmiersprache (typescript, javascript, python, go, rust, java, csharp)
  • deep (boolean, optional, default: true) - Aktiviert Deep Code Analysis

Deep Analysis Features:

  • 📦 Extrahiert Classes/Structs, Interfaces, Functions, Enums, Type Aliases
  • 🔍 Erfasst Methods, Properties, Constructors mit vollständigen Details
  • 📝 Analysiert JSDoc/Docstrings/Go Doc und berechnet Documentation Coverage
  • 🔗 Trackt Imports/Exports und Module Dependencies
  • 📊 Generiert Zusammenfassungs-Statistiken
  • 🎯 Multi-Language Support:
    • ✅ TypeScript/JavaScript (TypeScript Compiler API)
    • ✅ Python (Native Python AST)
    • ✅ Go (go/parser & go/ast)
    • ✅ PHP v2 (nikic/php-parser AST) - Neu! 100% genau
      • Namespaces & Use-Statements
      • Union/Intersection/Nullable Types
      • Enums, Traits, Attributes (PHP 8+)
      • Framework Detection:
        • CodeIgniter 3/4 (Controller, Model)
        • Laravel (Illuminate*)
        • Symfony (Symfony*)
        • MVC Pattern Recognition
      • Route Detection: 🚀
        • Convention-based: /controller/method/{param}
        • Attribute-based: #[Get('/')], #[Post('/')]
        • HTTP Methods: GET, POST, PUT, PATCH, DELETE
        • Parameter Types & Required/Optional Status
      • Middleware Detection: 🔒
        • Laravel: #[Middleware('auth')]
        • Symfony: #[IsGranted('ROLE_ADMIN')]
        • CodeIgniter 4: #[Filter('auth')]
        • CodeIgniter 3: @middleware (Docblocks)
        • Class-Level & Method-Level
        • Middleware Parameters
      • OpenAPI 3.0 Export: 📋
        • Auto-generates Swagger/OpenAPI specs
        • Routes → Paths conversion
        • Middleware → Security Schemes
        • JSON & YAML format support
    • ✅ PHP v1 (Regex-based) - Fallback
    • 🌍 Automatische Multi-Language-Erkennung
    • 🔜 Rust, Java, C# (in Planung)

Beispiel-Rückgabe:

{
  "deepAnalysis": {
    "summary": {
      "totalFiles": 11,
      "totalClasses": 2,
      "totalInterfaces": 23,
      "totalFunctions": 16,
      "overallDocCoverage": 3.17
    }
  }
}

docs_generate_structure

Generiert Dokumentations-Gerüst.

Parameter:

  • projectPath (string, required) - Pfad zum Projekt
  • framework (enum, required) - docusaurus | mkdocs | sphinx
  • template (string, optional) - Template-Name
  • outputPath (string, optional) - Ausgabepfad (default: ./docs)

docs_create_page

Erstellt oder bearbeitet Dokumentationsseite.

Parameter:

  • docsPath (string, required) - Pfad zur Doku
  • pagePath (string, required) - Relativer Pfad zur Seite
  • title (string, required) - Seitentitel
  • content (string, required) - Markdown-Inhalt

docs_generate_api

Generiert API-Dokumentation aus Code.

Parameter:

  • projectPath (string, required) - Pfad zum Quellcode
  • outputPath (string, required) - Ausgabepfad
  • language (enum, required) - Programmiersprache

docs_build_static

Baut statische Website.

Parameter:

  • docsPath (string, required) - Pfad zur Doku
  • framework (enum, required) - Framework
  • outputPath (string, optional) - Ausgabepfad (default: ./build)

docs_export_pdf

Exportiert Dokumentation als PDF.

Parameter:

  • docsPath (string, required) - Pfad zur Doku
  • outputPath (string, required) - PDF-Ausgabepfad
  • includePages (array, optional) - Spezifische Seiten

docs_preview

Startet lokalen Dev-Server.

Parameter:

  • docsPath (string, required) - Pfad zur Doku
  • framework (enum, required) - Framework
  • port (number, optional) - Port (default: 3000/8000)

docs_generate_openapi

Generiert OpenAPI 3.0 Spezifikation aus PHP-Code.

Parameter:

  • projectPath (string, required) - PHP-Projekt Pfad
  • outputPath (string, optional) - Ausgabepfad (default: ./openapi.json)
  • format (enum, optional) - json | yaml (default: json)
  • title (string, optional) - API-Titel
  • version (string, optional) - API-Version
  • serverUrl (string, optional) - API Server URL

docs_generate_sales_docs 🎯 NEU!

Generiert professionelle, verkaufsfertige Dokumentation für CodeCanyon, ThemeForest, etc.

Parameter:

  • projectPath (string, required) - PHP-Projekt Pfad
  • outputDir (string, optional) - Ausgabe-Verzeichnis (default: ./sales-docs)
  • productName (string, required) - Produktname
  • productVersion (string, optional) - Version (default: 1.0.0)
  • author (string, required) - Autor/Firma
  • description (string, required) - Produktbeschreibung
  • price (string, optional) - Preis (z.B., "$49")
  • demoUrl (string, optional) - Live-Demo URL
  • supportEmail (string, optional) - Support E-Mail
  • features (array, optional) - Liste der Key Features

Generierte Dateien:

  1. README.md (2.5 KB) - Produkt-Übersicht mit Features, Statistiken, Requirements
  2. INSTALLATION.md (3.2 KB) - Schritt-für-Schritt Setup-Guide
  3. API_REFERENCE.md (24.2 KB) - Komplette API-Dokumentation
  4. CONFIGURATION.md (2.1 KB) - Umgebungsvariablen, Security
  5. EXAMPLES.md (4.0 KB) - Code-Beispiele (JS, PHP, Python)
  6. FAQ.md (2.2 KB) - Häufig gestellte Fragen
  7. CHANGELOG.md (0.9 KB) - Versionshistorie
  8. COMPLETE_DOCUMENTATION.md (39.0 KB) - All-in-One für PDF

Gesamt: ~78 KB professionelle Dokumentation!

🏗️ Architektur

src/
├── index.ts                    # MCP Server Hauptdatei
├── core/                       # Kern-Module für Deep Analysis
│   ├── types.ts               # Type-Definitionen für alle Sprachen
│   └── analyzer.ts            # Abstract Base Class & Factory
├── analyzers/                  # Sprachspezifische Analyzer
│   ├── typescript.ts          # TypeScript/JavaScript (TS Compiler API)
│   ├── python.ts              # Python Wrapper (subprocess)
│   ├── go.ts                  # Go Wrapper (subprocess)
│   └── helpers/               # Native Language Parsers
│       ├── python_analyzer.py # Python AST Parser
│       └── go_analyzer.go     # Go AST Parser
└── tools/                      # MCP Tool-Implementierungen
    ├── analyzeProject.ts      # Deep Analysis Integration
    ├── generateStructure.ts
    ├── createPage.ts
    ├── generateApi.ts
    ├── buildStatic.ts
    ├── exportPdf.ts
    └── preview.ts

🔬 Deep Analysis Pipeline

  1. File Scanning - Durchsucht Projekt-Verzeichnis
  2. Language Detection - Erkennt dominante Programmiersprache
  3. Analyzer Selection - Wählt passenden AST-Parser (Factory Pattern)
  4. AST Parsing - Parst Code-Dateien mit sprachspezifischem Parser
    • TypeScript: TS Compiler API (in-process)
    • Python: Python AST module (subprocess)
    • Go: go/parser & go/ast (subprocess)
  5. Symbol Extraction - Extrahiert alle Code-Symbole (Classes, Functions, etc.)
  6. Documentation Analysis - Erfasst Dokumentations-Kommentare
  7. Summary Generation - Berechnet Statistiken und Coverage

📝 Lizenz

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured