Document Q&A MCP Server
A Python-based MCP server that enables document-based question answering by processing PDF, TXT, and Markdown files through OpenAI's API. It provides hallucination-free responses based strictly on document content using semantic search and includes a web interface for management.
README
๐ Document Q&A MCP Server
A Python-based Model Context Protocol (MCP) server that provides document-based question answering using OpenAI's API. Upload documents, ask questions, and get answers based strictly on document content with zero hallucinations.
๐ Live Demo
Web Interface: Start the server and visit http://localhost:8000
โก Quick Start
# 1. Install dependencies
pip install -r requirements.txt
# 2. Set your OpenAI API key
export OPENAI_API_KEY="your-api-key-here"
# 3. Start the web server
python web_server.py
# 4. Open http://localhost:8000 in your browser
# 5. Upload a document and start asking questions!
๐ฏ Features
- ๐ค Web File Upload: Drag & drop PDF, TXT, Markdown files
- ๐ค Smart Q&A: GPT-4 powered answers based strictly on your documents
- ๐ Semantic Search: OpenAI embeddings with cosine similarity
- ๐ซ Zero Hallucinations: Only answers from document content
- ๐ Real-time Dashboard: Live status, confidence scores, source attribution
- ๐๏ธ MCP Compliant: Standard protocol for AI integration
- โก Production Ready: Error handling, logging, async support
๐๏ธ Architecture
- Multi-format Support: PDF, TXT, and Markdown files
- Intelligent Chunking: Semantic document splitting with overlap
- Vector Search: OpenAI embeddings with cosine similarity
- Hallucination Prevention: Strict adherence to document content
- MCP Compliant: Standard protocol endpoints
- Production Ready: Clean architecture with error handling
Architecture
โโโโโโโโโโโโโโโโโโโ HTTP/Upload โโโโโโโโโโโโโโโโโโโ MCP Protocol โโโโโโโโโโโโโโโโโโโ
โ Web Browser โ โโโโโโโโโโโโโโโโโโบ โ Web Server โ โโโโโโโโโโโโโโโโโโโบ โ Document Q&A โ
โ โ โ โ โ MCP Server โ
โ โข File Upload โ โ โข File Handlingโ โ โ
โ โข Q&A Interfaceโ โ โข HTTP Endpointsโ โ โโโโโโโโโโโโโ โ
โ โข Results โ โ โข JSON API โ โ โDocumentLoaderโ โ
โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโ โ
โ โ Chunker โ โ
โ โโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโ โ
โ โEmbedding โ โ
โ โ Store โ โ
โ โโโโโโโโโโโโโ โ
โ โโโโโโโโโโโโโ โ
โ โ Query โ โ
โ โ Handler โ โ
โ โโโโโโโโโโโโโ โ
โโโโโโโโโโโโโโโโโโโ
The server consists of five main components:
- DocumentLoader: Handles PDF, TXT, and Markdown file parsing
- DocumentChunker: Intelligently splits documents into semantic chunks
- EmbeddingStore: Manages vector embeddings for similarity search
- QueryHandler: Processes questions and generates context-aware answers
- MCPServer: Exposes MCP-compliant endpoints
๐ Usage Options
Option 1: Web Interface (Recommended)
python web_server.py
# Visit http://localhost:8000
Option 2: Interactive CLI
python interactive_client.py
Option 3: Simple Version (No MCP)
python simple_document_qa.py
# Visit http://localhost:8001
Option 4: Run Tests
python test_server.py
๐ฑ Web Interface Features
- ๐ค File Upload: Click "Choose File" or drag & drop documents
- โ Question Input: Type questions in the text area
- ๐ Live Dashboard: Real-time status and document info
- ๐ฏ Confidence Scores: See how confident the AI is in each answer
- ๐ Source Attribution: Know exactly which document parts were used
- โก Real-time Processing: Instant feedback and results
๐ก MCP Endpoints
1. Load Document
Load a document into the system for question answering.
Request:
{
"method": "load_document",
"params": {
"file_path": "/path/to/document.pdf"
}
}
Response:
{
"status": "success",
"message": "Successfully loaded document: /path/to/document.pdf",
"metadata": {
"file_path": "/path/to/document.pdf",
"content_length": 15420,
"num_chunks": 12,
"total_chunks_in_store": 12
}
}
2. Ask Question
Ask a question about loaded documents.
Request:
{
"method": "ask_question",
"params": {
"question": "What are the main features?"
}
}
Response:
{
"status": "success",
"question": "What are the main features?",
"answer": "Based on the document, the main features include...",
"sources": [
{
"file": "/path/to/document.pdf",
"chunk_id": "document_0",
"similarity_score": 0.892
}
],
"confidence": 0.892
}
3. Get Status
Check server status and loaded documents.
Request:
{
"method": "get_status",
"params": {}
}
Response:
{
"status": "active",
"loaded_documents": ["/path/to/document.pdf"],
"total_chunks": 12,
"supported_formats": [".pdf", ".txt", ".md", ".markdown"]
}
๐ Project Structure
document-qa-mcp-server/
โโโ ๐ document_qa_server.py # Main MCP server implementation
โโโ ๐ web_server.py # Web interface with file upload
โโโ ๐ฅ๏ธ simple_document_qa.py # Simplified version (no MCP)
โโโ ๐ฌ interactive_client.py # CLI interface
โโโ ๐งช test_server.py # Test suite
โโโ ๐ example_usage.py # Usage examples
โโโ ๐ requirements.txt # Dependencies
โโโ ๐ MCP_SERVER_DOCUMENTATION.md # Complete MCP guide
โโโ ๐จ web_interface.py # Static HTML generator
โโโ ๐ README.md # This file
๐ง Configuration
Chunking Parameters
Modify chunking behavior in DocumentChunker:
chunker = DocumentChunker(
chunk_size=1000, # Target chunk size in characters
overlap=200 # Overlap between chunks
)
Retrieval Parameters
Adjust retrieval in QueryHandler.answer_question():
similar_chunks = await self.embedding_store.search_similar(
question,
top_k=3 # Number of chunks to retrieve
)
OpenAI Model Configuration
Change models in the respective methods:
# Embeddings model
model="text-embedding-3-small"
# Chat completion model
model="gpt-4"
๐จ Error Handling
The server handles common errors gracefully:
- File not found: Clear error with file path
- Unsupported format: Lists supported formats
- API errors: Returns OpenAI error messages
- No documents loaded: Prompts to load documents first
- Missing information: Returns "The document does not contain this information"
๐ฎ Extending for Multiple Documents
The current architecture supports multiple documents. To extend:
- Document Management: Add document metadata tracking
- Source Filtering: Filter by specific documents
- Cross-Document Search: Search across all loaded documents
- Document Removal: Add endpoint to remove specific documents
Example extension:
async def remove_document(self, file_path: str) -> Dict[str, Any]:
"""Remove a specific document from the store."""
self.embedding_store.chunks = [
chunk for chunk in self.embedding_store.chunks
if chunk.source_file != file_path
]
# Rebuild embeddings matrix...
โก Performance Considerations
- Chunk Size: Larger chunks = more context but slower search
- Overlap: More overlap = better context continuity but more storage
- Top-K: More retrieved chunks = better context but higher API costs
- Embedding Model:
text-embedding-3-smallbalances cost and quality
๐ Security Notes
- Store API keys securely (environment variables, secrets management)
- Input validation implemented for file paths and parameters
- Consider rate limiting for production deployments
- Sanitize file paths to prevent directory traversal
๐ค Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
๐ Support
For issues and questions:
- Check the error messages and logs
- Verify OpenAI API key and quota
- Ensure document formats are supported
- Review the example usage patterns
- Open an issue on GitHub
๐ Acknowledgments
- OpenAI for GPT-4 and embedding models
- Model Context Protocol for the MCP specification
- Starlette for the web framework
- scikit-learn for cosine similarity calculations
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.