Document Organizer MCP Server

Document Organizer MCP Server

Enables systematic document organization with PDF-to-Markdown conversion, intelligent categorization, and automated workflow management. Supports project documentation standards and provides complete end-to-end document processing pipelines.

Category
Visit Server

README

Document Organizer MCP Server

CI/CD Pipeline npm version License: MIT

A powerful Model Context Protocol (MCP) server for systematic document organization, PDF-to-Markdown conversion, and Universal Project Documentation Standard implementation.

Features

🔄 PDF Conversion Engine

  • Dual Engine Support: marker (recommended) and pymupdf4llm
  • Intelligent Table Preservation: Advanced table-aware cleaning
  • Image Extraction: Optional embedded image extraction
  • Memory Efficient: Configurable processing for large documents
  • Auto-Cleaning: Removes marker formatting artifacts automatically

📊 Document Organization

  • Recursive PDF Discovery: Comprehensive file system scanning
  • Conversion Status Auditing: Track converted vs unconverted documents
  • Intelligent Categorization: Keyword-based content analysis
  • Automated Folder Organization: Category-based directory structures
  • Full Workflow Automation: End-to-end document processing pipeline

📋 Universal Project Documentation Standard

  • Standardized Structure: Consistent documentation across all projects
  • Status-Driven Plans: ACTIVE, ARCHIVED, SUPERSEDED, BLOCKED statuses
  • Weekly Progress Tracking: Automated handoff documentation
  • Compliance Validation: Ensure adherence to documentation standards
  • Template Generation: Project-specific documentation templates

Installation

npm install -g document-organizer-mcp

Dependencies

For PDF conversion functionality, install one or both engines:

# Marker (recommended for complex documents)
pip install marker-pdf

# pymupdf4llm (lightweight alternative)
pip install pymupdf4llm

Usage

MCP Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "document-organizer": {
      "command": "document-organizer-mcp",
      "args": []
    }
  }
}

Available Tools

PDF Conversion Tools

  • convert_pdf - Convert PDF to Markdown with configurable options
  • check_dependency - Verify and optionally install conversion engines

Document Organization Tools

  • document_organizer__discover_pdfs - Recursively find all PDF files
  • document_organizer__check_conversions - Audit conversion status
  • document_organizer__convert_missing - Convert only unconverted PDFs
  • document_organizer__analyze_content - Categorize documents by content
  • document_organizer__organize_structure - Create organized folder hierarchies
  • document_organizer__full_workflow - Complete automation pipeline

Documentation Standard Tools

  • document_organizer__init_project_docs - Initialize standard documentation structure
  • document_organizer__validate_doc_structure - Validate compliance
  • document_organizer__archive_plan - Archive development plans
  • document_organizer__create_weekly_handoff - Generate progress reports

Examples

Basic PDF Conversion

// Convert a single PDF using marker engine
await client.callTool("convert_pdf", {
  pdf_path: "/path/to/document.pdf",
  output_path: "/path/to/output.md",
  options: {
    engine: "marker",
    auto_clean: true
  }
});

Full Document Organization Workflow

// Discover, convert, and organize all documents
await client.callTool("document_organizer__full_workflow", {
  directory_path: "/path/to/documents",
  analyze_content: true
});

Initialize Project Documentation

// Set up Universal Project Documentation Standard
await client.callTool("document_organizer__init_project_docs", {
  directory_path: "/path/to/project",
  project_name: "My Project",
  project_type: "web-app"
});

Configuration Options

PDF Conversion Options

interface ConversionOptions {
  engine?: "marker" | "pymupdf4llm";     // Conversion engine
  auto_clean?: boolean;                  // Auto-clean marker output
  page_chunks?: boolean;                 // Process as individual pages
  write_images?: boolean;                // Extract embedded images
  image_path?: string;                   // Image extraction directory
  table_strategy?: "fast" | "accurate";  // Table extraction strategy
  extract_content?: "text" | "figures" | "both"; // Content types
}

Document Categories

Automatic categorization supports:

  • Research: Analysis, studies, investigations
  • Planning: Strategies, roadmaps, discussions
  • Documentation: Guides, manuals, references
  • Technical: Implementation, architecture, APIs
  • Business: Market analysis, commercial strategies
  • General: Uncategorized content

Universal Project Documentation Standard

Required Files

  • CURRENT_STATUS.md - Real-time project status
  • ACTIVE_PLAN.md - Currently executing plan
  • .claude-instructions.md - AI assistant instructions

Directory Structure

/docs/
├── plans/
│   ├── archived/     # Completed plans
│   └── superseded/   # Replaced plans
├── progress/YYYY-MM/ # Monthly progress logs
└── reference/        # Technical documentation
    ├── 01-architecture/
    ├── 02-apis/
    ├── 03-development/
    └── ...

Status Management

  • ACTIVE: Currently executing plan
  • ARCHIVED: Historical/completed plan
  • SUPERSEDED: Replaced by newer plan
  • BLOCKED: Waiting for external input

Development

# Clone repository
git clone https://github.com/cordlesssteve/document-organizer-mcp.git
cd document-organizer-mcp

# Install dependencies
npm install

# Build project
npm run build

# Run development mode
npm run dev

# Run tests
npm test

# Lint code
npm run lint

Performance Considerations

  • Memory Efficiency: Use page_chunks: true for large PDFs
  • Processing Speed: marker is slower but higher quality than pymupdf4llm
  • Batch Processing: convert_missing tool optimizes bulk conversions
  • Table Preservation: marker with auto-cleaning provides best table formatting

Error Handling

The server provides comprehensive error handling:

  • Dependency validation before operations
  • Graceful fallback between conversion engines
  • Detailed error messages with context
  • Progress tracking for long-running operations

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Ensure all tests pass
  6. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured