
Document Organizer MCP Server
Enables systematic document organization with PDF-to-Markdown conversion, intelligent categorization, and automated workflow management. Supports project documentation standards and provides complete end-to-end document processing pipelines.
README
Document Organizer MCP Server
A powerful Model Context Protocol (MCP) server for systematic document organization, PDF-to-Markdown conversion, and Universal Project Documentation Standard implementation.
Features
🔄 PDF Conversion Engine
- Dual Engine Support: marker (recommended) and pymupdf4llm
- Intelligent Table Preservation: Advanced table-aware cleaning
- Image Extraction: Optional embedded image extraction
- Memory Efficient: Configurable processing for large documents
- Auto-Cleaning: Removes marker formatting artifacts automatically
📊 Document Organization
- Recursive PDF Discovery: Comprehensive file system scanning
- Conversion Status Auditing: Track converted vs unconverted documents
- Intelligent Categorization: Keyword-based content analysis
- Automated Folder Organization: Category-based directory structures
- Full Workflow Automation: End-to-end document processing pipeline
📋 Universal Project Documentation Standard
- Standardized Structure: Consistent documentation across all projects
- Status-Driven Plans: ACTIVE, ARCHIVED, SUPERSEDED, BLOCKED statuses
- Weekly Progress Tracking: Automated handoff documentation
- Compliance Validation: Ensure adherence to documentation standards
- Template Generation: Project-specific documentation templates
Installation
npm install -g document-organizer-mcp
Dependencies
For PDF conversion functionality, install one or both engines:
# Marker (recommended for complex documents)
pip install marker-pdf
# pymupdf4llm (lightweight alternative)
pip install pymupdf4llm
Usage
MCP Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"document-organizer": {
"command": "document-organizer-mcp",
"args": []
}
}
}
Available Tools
PDF Conversion Tools
convert_pdf
- Convert PDF to Markdown with configurable optionscheck_dependency
- Verify and optionally install conversion engines
Document Organization Tools
document_organizer__discover_pdfs
- Recursively find all PDF filesdocument_organizer__check_conversions
- Audit conversion statusdocument_organizer__convert_missing
- Convert only unconverted PDFsdocument_organizer__analyze_content
- Categorize documents by contentdocument_organizer__organize_structure
- Create organized folder hierarchiesdocument_organizer__full_workflow
- Complete automation pipeline
Documentation Standard Tools
document_organizer__init_project_docs
- Initialize standard documentation structuredocument_organizer__validate_doc_structure
- Validate compliancedocument_organizer__archive_plan
- Archive development plansdocument_organizer__create_weekly_handoff
- Generate progress reports
Examples
Basic PDF Conversion
// Convert a single PDF using marker engine
await client.callTool("convert_pdf", {
pdf_path: "/path/to/document.pdf",
output_path: "/path/to/output.md",
options: {
engine: "marker",
auto_clean: true
}
});
Full Document Organization Workflow
// Discover, convert, and organize all documents
await client.callTool("document_organizer__full_workflow", {
directory_path: "/path/to/documents",
analyze_content: true
});
Initialize Project Documentation
// Set up Universal Project Documentation Standard
await client.callTool("document_organizer__init_project_docs", {
directory_path: "/path/to/project",
project_name: "My Project",
project_type: "web-app"
});
Configuration Options
PDF Conversion Options
interface ConversionOptions {
engine?: "marker" | "pymupdf4llm"; // Conversion engine
auto_clean?: boolean; // Auto-clean marker output
page_chunks?: boolean; // Process as individual pages
write_images?: boolean; // Extract embedded images
image_path?: string; // Image extraction directory
table_strategy?: "fast" | "accurate"; // Table extraction strategy
extract_content?: "text" | "figures" | "both"; // Content types
}
Document Categories
Automatic categorization supports:
- Research: Analysis, studies, investigations
- Planning: Strategies, roadmaps, discussions
- Documentation: Guides, manuals, references
- Technical: Implementation, architecture, APIs
- Business: Market analysis, commercial strategies
- General: Uncategorized content
Universal Project Documentation Standard
Required Files
CURRENT_STATUS.md
- Real-time project statusACTIVE_PLAN.md
- Currently executing plan.claude-instructions.md
- AI assistant instructions
Directory Structure
/docs/
├── plans/
│ ├── archived/ # Completed plans
│ └── superseded/ # Replaced plans
├── progress/YYYY-MM/ # Monthly progress logs
└── reference/ # Technical documentation
├── 01-architecture/
├── 02-apis/
├── 03-development/
└── ...
Status Management
- ACTIVE: Currently executing plan
- ARCHIVED: Historical/completed plan
- SUPERSEDED: Replaced by newer plan
- BLOCKED: Waiting for external input
Development
# Clone repository
git clone https://github.com/cordlesssteve/document-organizer-mcp.git
cd document-organizer-mcp
# Install dependencies
npm install
# Build project
npm run build
# Run development mode
npm run dev
# Run tests
npm test
# Lint code
npm run lint
Performance Considerations
- Memory Efficiency: Use
page_chunks: true
for large PDFs - Processing Speed: marker is slower but higher quality than pymupdf4llm
- Batch Processing:
convert_missing
tool optimizes bulk conversions - Table Preservation: marker with auto-cleaning provides best table formatting
Error Handling
The server provides comprehensive error handling:
- Dependency validation before operations
- Graceful fallback between conversion engines
- Detailed error messages with context
- Progress tracking for long-running operations
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.