Doclea MCP

Doclea MCP

Provides persistent memory for AI coding assistants, storing and retrieving architectural decisions, patterns, and solutions across sessions using semantic search, while also offering git integration for commit messages and code expertise mapping.

Category
Visit Server

README

@doclea/mcp

npm version License: MIT Node.js Bun

Local MCP server for Doclea — persistent memory for AI coding assistants.

Doclea gives your AI coding assistant (Claude Code, etc.) persistent memory across sessions. It remembers architectural decisions, patterns, solutions, and codebase context so you don't have to repeat yourself.

Features

  • Persistent Memory — Store decisions, patterns, solutions, and notes that persist across sessions
  • Semantic Search — Find relevant context using vector similarity search
  • Git Integration — Generate commit messages, PR descriptions, and changelogs from your history
  • Code Expertise Mapping — Identify code owners and suggest reviewers based on git blame analysis
  • Zero-Config Mode — Works immediately with no Docker or external services required
  • Auto-Detection — Automatically uses optimized Docker backends when available

Quick Start

Add to your Claude Code config (~/.claude.json or project .claude.json):

{
  "mcpServers": {
    "doclea": {
      "command": "npx",
      "args": ["@doclea/mcp"]
    }
  }
}

Restart Claude Code, navigate to your project, and ask:

Initialize doclea for this project

That's it! Doclea scans your codebase, git history, and documentation to bootstrap memories.

Installation Options

Method Command Setup Time Best For
Zero-Config npx @doclea/mcp <30 seconds Quick start, small projects
Optimized curl install.sh 3-5 minutes Production, large codebases
Manual Clone & build 5-10 minutes Development, customization

Zero-Config (Recommended)

Works immediately with no Docker required. Uses embedded sqlite-vec for vectors and Transformers.js for embeddings.

First run downloads the embedding model (~90MB) which is cached for future use.

Optimized Installation (Docker)

For larger codebases with better performance:

curl -fsSL https://raw.githubusercontent.com/docleaai/doclea-mcp/main/scripts/install.sh | bash

This script:

  • Detects your OS and architecture
  • Installs prerequisites (Bun, Docker if needed)
  • Sets up Qdrant vector database and TEI embeddings service
  • Configures Claude Code automatically

Manual Installation

git clone https://github.com/docleaai/doclea-mcp.git
cd doclea-mcp
bun install
bun run build

Add to Claude Code (~/.claude.json):

{
  "mcpServers": {
    "doclea": {
      "command": "node",
      "args": ["/absolute/path/to/doclea-mcp/dist/index.js"]
    }
  }
}

For detailed setup instructions, see docs/INSTALLATION.md.

Usage Examples

Store Memories

Store this as a decision: We're using PostgreSQL for ACID compliance
in financial transactions. Tag it with "database" and "infrastructure".

Search Context

Search memories for authentication patterns

Git Operations

Generate a commit message for my staged changes
Create a PR description for this branch
Generate a changelog from v1.0.0 to HEAD

Code Expertise

Who should review changes to src/auth/?

MCP Tools

Memory Tools

Tool Description
doclea_store Store a memory (decision, solution, pattern, architecture, note)
doclea_search Semantic search across memories
doclea_get Get memory by ID
doclea_update Update existing memory
doclea_delete Delete memory

Git Tools

Tool Description
doclea_commit_message Generate conventional commit from staged changes
doclea_pr_description Generate PR description with context
doclea_changelog Generate changelog between refs

Expertise Tools

Tool Description
doclea_expertise Map codebase expertise and bus factor risks
doclea_suggest_reviewers Suggest PR reviewers based on file ownership

Bootstrap Tools

Tool Description
doclea_init Initialize project, scan git history, docs, and code
doclea_import Import from markdown files or ADRs

Memory Types

Type Use Case
decision Architectural decisions, technology choices
solution Bug fixes, problem resolutions
pattern Code patterns, conventions
architecture System design notes
note General documentation

Configuration

Doclea works out of the box with zero configuration. It auto-detects available backends:

  1. If Docker services (Qdrant/TEI) are running → uses them for better performance
  2. Otherwise → uses embedded sqlite-vec + Transformers.js

Custom Configuration

Create .doclea/config.json in your project root:

{
  "embedding": {
    "provider": "transformers",
    "model": "Xenova/all-MiniLM-L6-v2"
  },
  "vector": {
    "provider": "sqlite-vec",
    "dbPath": ".doclea/vectors.db"
  },
  "storage": {
    "dbPath": ".doclea/local.db"
  }
}

Embedding Providers

Provider Config Notes
transformers { "provider": "transformers" } Default, no Docker
local { "provider": "local", "endpoint": "http://localhost:8080" } TEI Docker
openai { "provider": "openai", "apiKey": "..." } API key required
ollama { "provider": "ollama", "model": "nomic-embed-text" } Local Ollama

Vector Store Providers

Provider Config Notes
sqlite-vec { "provider": "sqlite-vec" } Default, no Docker
qdrant { "provider": "qdrant", "url": "http://localhost:6333" } Docker service

Architecture

┌─────────────────────────────────────────────────────────┐
│                     Claude Code                         │
│                         ↓ MCP                           │
├─────────────────────────────────────────────────────────┤
│                   Doclea MCP Server                     │
│  ┌─────────┐ ┌─────────┐ ┌──────────┐ ┌───────────┐   │
│  │ Memory  │ │   Git   │ │Expertise │ │ Bootstrap │   │
│  │  Tools  │ │  Tools  │ │  Tools   │ │   Tools   │   │
│  └────┬────┘ └────┬────┘ └────┬─────┘ └─────┬─────┘   │
│       └───────────┴───────────┴─────────────┘          │
│                         ↓                              │
│  ┌──────────────┐ ┌──────────────┐ ┌──────────────┐   │
│  │   SQLite     │ │  Vector DB   │ │  Embeddings  │   │
│  │  (metadata)  │ │(sqlite-vec/  │ │(transformers/│   │
│  │              │ │   qdrant)    │ │    TEI)      │   │
│  └──────────────┘ └──────────────┘ └──────────────┘   │
└─────────────────────────────────────────────────────────┘

Development

# Install dependencies
bun install

# Run in development mode (hot reload)
bun run dev

# Run tests
bun test              # All tests
bun run test:unit     # Unit tests only
bun run test:integration  # Integration tests (requires Docker)

# Type check
bun run typecheck

# Lint
bun run lint          # Check
bun run lint:fix      # Auto-fix

# Build
bun run build

Troubleshooting

First startup is slow

The embedding model (~90MB) downloads on first run. Cached at:

  • Linux/macOS: ~/.cache/doclea/transformers
  • Windows: %LOCALAPPDATA%\doclea\transformers

macOS SQLite extension error

macOS ships with Apple's SQLite which doesn't support extensions:

brew install sqlite

The server auto-detects Homebrew SQLite.

MCP server not appearing in Claude

  1. Verify the path in config is absolute (manual installs)
  2. Check that bun run build completed successfully
  3. Restart Claude Code completely

See docs/INSTALLATION.md for more troubleshooting.

Contributing

We welcome contributions! Please see CONTRIBUTING.md for guidelines.

# Fork and clone
git clone https://github.com/YOUR_USERNAME/doclea-mcp.git

# Create feature branch
git checkout -b feature/amazing-feature

# Make changes, test, and lint
bun test && bun run lint

# Commit and push
git commit -m 'feat: add amazing feature'
git push origin feature/amazing-feature

Roadmap

  • [ ] Cloud sync for team collaboration
  • [ ] VS Code extension
  • [ ] Additional embedding providers
  • [ ] Memory analytics dashboard

License

MIT © Quantic Studios


<p align="center"> <a href="https://doclea.ai">Website</a> • <a href="https://github.com/docleaai/doclea-mcp/issues">Issues</a> • <a href="https://github.com/docleaai/doclea-mcp/discussions">Discussions</a> </p>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured