DocAgent
AI-powered document generation suite that creates comprehensive software documentation including requirements, design specs, test strategies, and deployment guides through LangGraph workflows. Integrates with Cursor IDE via MCP to transform project ideas into professional documentation suites.
README
DocAgent - AI-Powered Document Generation Suite
AI-powered document generation suite with LangGraph workflows and Cursor IDE integration via MCP (Model Context Protocol)
DocAgent is a comprehensive document generation system that creates professional software documentation using AI. It integrates seamlessly with Cursor IDE through MCP servers and supports 12 different document types with orchestrated workflows.
🚀 Features
Document Types
- 📋 Business Requirements (BRD/PRD) - Product and business requirement documents
- ⚙️ Functional Requirements (FRD) - Detailed functional specifications
- 🏗️ System Requirements (SRD) - System architecture and requirements
- 🧪 Technical Requirements (TRD/TDD) - Technical design and test documents
- 🗄️ Database Design (ERD/API) - Entity relationship diagrams and API specs
- 🎨 UI/UX Design - Wireframes and design system documentation
- 📊 Project Planning - Project plans and milestone tracking
- ✅ Test Strategy - Comprehensive testing documentation
- 🚀 CI/CD Documentation - Deployment and environment setup
- 📦 Release Runbooks - Release procedures and rollback plans
Core Capabilities
- 🔄 LangGraph Workflows - Parallel document generation with conditional logic
- 🎯 Smart Orchestration - Profile-based generation (Full, Lean, Tech-only, PM-only)
- 💻 Cursor IDE Integration - Native MCP server integration
- 🛡️ Safe File Operations - Collision detection and backup systems
- 📝 Jinja2 Templates - Customizable document templates
- ⚡ FastMCP v2 - Modern MCP protocol implementation
- 🔧 CLI Tools - Command-line interface for batch operations
📦 Installation
Prerequisites
- Python 3.9+
- Cursor IDE
- Git
Quick Setup
# Clone the repository
git clone https://github.com/vinnyfds/docagent.git
cd docagent
# Install dependencies
pip install -r requirements.txt
# Create environment file
cp .env.template .env
# Edit .env with your API keys
# Verify installation
python scripts/verify_mcp.py
Cursor IDE Integration
# Install FastMCP
pip install fastmcp
# The MCP servers will be automatically configured in Cursor
# Restart Cursor to load the DocAgent tools
🎯 Quick Start
Using Cursor IDE (Recommended)
- Open any file in Cursor
- Type
/to open command palette - Look for DocAgent tools:
ping()- Health checkgenerate_all()- Generate all documentsorchestrate_docgen()- Profile-based generation
Using CLI
# Generate all documents
python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all
# Generate specific documents
python scripts/cli_generate.py --idea my_idea.json --docs brd_prd frd srd
# Use orchestration profiles
python -c "
from orchestrator.graph import orchestrate_docgen
from docs_agent.state import Idea
import json
with open('tests/fixtures/idea_sample.json') as f:
data = json.load(f)
idea = Idea(**data)
result = orchestrate_docgen(idea, profile='lean', overwrite=False)
print('Generated:', result)
"
🏗️ Architecture
System Overview
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Cursor IDE │◄──►│ FastMCP Server │◄──►│ LangGraph │
│ │ │ │ │ Workflow │
│ - Command Palette│ │ - DocGenAgent │ │ │
│ - Tools Integration │ │ - Orchestrator │ │ - Parallel Nodes│
│ - MCP Protocol │ │ - Tool Registry │ │ - Conditional │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ Document Engine │
│ │
│ - Jinja2 Templates│
│ - Safe File Ops │
│ - Output Manager │
└──────────────────┘
Project Structure
docagent/
├── docs_agent/ # Core document generation agent
│ ├── __init__.py # Package initialization
│ ├── state.py # Pydantic models (Idea, Context, DocRequest)
│ ├── graph.py # LangGraph workflow definition
│ ├── server.py # FastMCP server implementation
│ ├── nodes/ # Document generation nodes
│ │ ├── brd_prd.py # Business requirements
│ │ ├── frd.py # Functional requirements
│ │ ├── srd.py # System requirements
│ │ └── ... # Other document types
│ ├── prompts/ # Jinja2 templates
│ │ ├── brd_prd.md.jinja
│ │ ├── openapi.yaml.jinja
│ │ └── ...
│ └── utils/ # Utilities
│ ├── render.py # Template rendering
│ └── safety.py # Safe file operations
├── orchestrator/ # Orchestration layer
│ ├── graph.py # Orchestration logic
│ └── server.py # Orchestrator MCP server
├── scripts/ # CLI and utilities
│ ├── cli_generate.py # Command-line interface
│ ├── verify_mcp.py # Installation verification
│ └── test_mcp_servers.py # Server testing
├── tests/ # Test suite
│ └── fixtures/ # Test data
│ └── idea_sample.json
├── outputs/ # Generated documents
├── .cursor_rules # Cursor IDE guardrails
├── requirements.txt # Python dependencies
├── .env.template # Environment template
└── README.md # This file
🎮 Usage Examples
Idea Structure
{
"title": "E-commerce Platform",
"description": "Modern e-commerce platform with AI recommendations",
"context": {
"domain": "E-commerce",
"stakeholders": ["Product Manager", "Engineering Team", "UX Designer"],
"timeline": "6 months",
"budget": "$500K"
},
"personas": [
{"name": "Customer", "description": "Online shoppers"},
{"name": "Admin", "description": "Platform administrators"}
],
"modules": [
{"name": "User Management", "description": "User registration and profiles"},
{"name": "Product Catalog", "description": "Product browsing and search"},
{"name": "Shopping Cart", "description": "Cart and checkout functionality"}
],
"entities": [
{"name": "User", "fields": ["id", "email", "profile"]},
{"name": "Product", "fields": ["id", "name", "price", "inventory"]}
],
"apis": [
{"name": "User API", "methods": ["GET", "POST", "PUT", "DELETE"]},
{"name": "Product API", "methods": ["GET", "POST", "PUT"]}
]
}
Orchestration Profiles
PROFILES = {
"full": [
"brd_prd", "frd", "srd", "trd_tdd", "erd_api",
"ui_wireframes", "project_plan", "test_strategy",
"cicd_env", "release_runbook"
],
"lean": ["brd_prd", "frd", "srd", "erd_api"],
"tech_only": ["srd", "trd_tdd", "erd_api", "cicd_env"],
"pm_only": ["brd_prd", "project_plan", "test_strategy", "release_runbook"]
}
🛠️ Development
Running Tests
# Run verification tests
python scripts/verify_mcp.py
# Test MCP servers
python scripts/test_mcp_servers.py
# Generate sample documents
python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all
Code Quality
# Install development dependencies
pip install ruff pytest
# Run linting
ruff check .
# Run tests
pytest -v
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
🔧 Configuration
Environment Variables
# Required
OPENAI_API_KEY=your_openai_api_key_here
# Optional
DOCGEN_BUCKET=your_s3_bucket_for_outputs
ALLOW_OVERWRITE=false
LOG_LEVEL=INFO
ENVIRONMENT=development
MCP_HOST=localhost
MCP_PORT=3000
Cursor MCP Setup
The MCP servers are automatically configured for Cursor IDE. Manual configuration:
{
"mcpServers": {
"DocGenAgent": {
"command": "cmd",
"args": ["/c", "python", "docs_agent/server.py"],
"cwd": "/path/to/docagent"
},
"DocGenOrchestrator": {
"command": "cmd",
"args": ["/c", "python", "orchestrator/server.py"],
"cwd": "/path/to/docagent"
}
}
}
📚 Documentation
🚀 Deployment
AWS Lambda (Coming Soon)
# Package for serverless deployment
npm install -g serverless
serverless deploy
Docker
# Build container
docker build -t docagent .
# Run container
docker run -p 3000:3000 docagent
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
Contributors
- @vinnyfds - Creator & Maintainer
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- LangGraph - Workflow orchestration
- FastMCP - MCP server framework
- Cursor IDE - AI-powered development environment
- Jinja2 - Template engine
📧 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: vinnyfds@gmail.com
🎯 Transform your ideas into comprehensive documentation with AI-powered precision!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.