Django Styleguide MCP Server

Django Styleguide MCP Server

Provides AI assistants easy access to Django best practices by splitting comprehensive styleguide documentation into AI-friendly sections accessible through the Model Context Protocol.

Category
Visit Server

README

Django Styleguide for MCP Servers

Ready-to-use Django Styleguide documentation for Model Context Protocol (MCP) servers in Cursor, Windsurf, Claude Desktop, and other AI editors.

What is this?

This repository takes the original Django Styleguide documentation as a git submodule, automatically splits it into smaller, AI-friendly files and provides access to them through the llms.txt format.

Result: Your AI assistant can easily find and use all Django best practices from the original styleguide.

How it works

  1. Git submodule: We include the original Django Styleguide as a submodule
  2. Automatic splitting: CLI tool splits the large README.md into separate files by sections
  3. llms.txt generation: Creates an index file with absolute URLs for each section
  4. Ready for consumption: MCP servers can easily access the documentation

What you get

  • 📄 18 separate files with Django best practices (Models, Services, APIs, etc.)
  • 🔗 llms.txt index with direct links to GitHub raw content
  • 🔄 Automatic updates when the original styleguide changes
  • 🤖 AI-friendly format for MCP servers

Example generated documentation

After processing you get this structure:

docs/
├── models.md                    # Django models
├── services.md                  # Service layer  
├── apis-serializers.md          # APIs and serializers
├── urls.md                      # URL structure
├── settings.md                  # Django settings
├── errors-exception-handling.md # Error handling
├── testing.md                   # Testing
├── celery.md                    # Celery tasks
└── ...other sections

llms.txt  # Index for MCP servers

llms.txt contains direct links:

# Table of Contents

- [Models](https://raw.githubusercontent.com/dmmeteo/django-styleguide-mcp/main/docs/models.md)
- [Services](https://raw.githubusercontent.com/dmmeteo/django-styleguide-mcp/main/docs/services.md)
- [APIs & Serializers](https://raw.githubusercontent.com/dmmeteo/django-styleguide-mcp/main/docs/apis-serializers.md)
...

Integration with AI editors

Cursor

Add to ~/.cursor/mcp.json:

{
  "mcpServers": {
    "django-styleguide": {
      "command": "uvx",
      "args": [
        "--from",
        "mcpdoc",
        "mcpdoc",
        "--urls",
        "DjangoStyleguide:https://raw.githubusercontent.com/dmmeteo/django-styleguide-mcp/main/llms.txt",
        "--transport",
        "stdio"
      ]
    }
  }
}

Add to your Cursor Rules:

For ANY questions about Django best practices, use the django-styleguide MCP server:
+ call list_doc_sources to get available sources
+ call fetch_docs to read llms.txt
+ analyze URLs in llms.txt based on the question  
+ fetch relevant documentation sections
+ provide comprehensive answers based on Django Styleguide

Windsurf

Similar configuration in ~/.codeium/windsurf/mcp_config.json.

Claude Desktop

Add to ~/Library/Application\ Support/Claude/claude_desktop_config.json.

Keeping documentation up-to-date

Documentation automatically updates when the original Django Styleguide changes:

# 1. Git submodule automatically updates
git submodule update --remote django-styleguide

# 2. Regenerate documentation  
uv run python -m mcpdoc_split.cli django-styleguide/README.md \
    --url-prefix "https://raw.githubusercontent.com/dmmeteo/django-styleguide-mcp/main" \
    --base-path "/docs" \
    --max-level 2

# 3. Commit changes
git add docs/ llms.txt
git commit -m "Update documentation from Django Styleguide"

Development

If you want to make changes or run locally:

# Clone repository
git clone https://github.com/dmmeteo/django-styleguide-mcp.git
cd django-styleguide-mcp

# Initialize submodule
git submodule update --init --recursive

# Install dependencies
uv sync

# Run CLI
uv run python -m mcpdoc_split.cli django-styleguide/README.md

# Run tests  
uv run pytest

Project structure

mcpdoc_split/           # CLI tool for splitting documentation
├── cli.py              # Command line interface
├── main.py             # File splitting logic
└── ...

django-styleguide/      # Git submodule of original styleguide
docs/                   # Generated documentation files  
llms.txt               # Index for MCP servers
tests/                 # Tests

Acknowledgments

Related projects

  • Django Styleguide - The original Django best practices guide
  • mcpdoc - MCP server for documentation access
  • llms.txt - Standard for AI-friendly documentation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured