DICOM MCP Server

DICOM MCP Server

Enables AI assistants to query, read, download, and move medical imaging data on DICOM servers (PACS, VNA) including patient searches, study retrieval, PDF report extraction, and image transfer to AI endpoints for analysis.

Category
Visit Server

README

DICOM MCP Server for Medical Imaging Systems 🏥

License: MIT Python Version PyPI Version PyPI Downloads

The dicom-mcp server enables AI assistants to query, read, and move data on DICOM servers (PACS, VNA, etc.).

<div align="center">

🤝 Contribute • 📝 Report Bug

</div>

---------------------------------------------------------------------
🧑‍⚕️ User: "Any significant findings in John Doe's previous CT report?"

🧠 LLM → ⚙️ Tools:
   query_patients → query_studies → query_series → extract_pdf_text_from_dicom

💬 LLM Response: "The report from 2025-03-26 mentions a history of splenomegaly (enlarged spleen)"

🧑‍⚕️ User: "What's the volume of his spleen at the last scan and the scan today?"

🧠 LLM → ⚙️ Tools:
   (query_studies → query_series → move_series → query_series → extract_pdf_text_from_dicom) x2
   (The move_series tool sends the latest CT to a DICOM segmentation node, which returns volume PDF report)

💬 LLM Response: "last year 2024-03-26: 412cm³, today 2025-04-10: 350cm³"
---------------------------------------------------------------------

✨ Core Capabilities

dicom-mcp provides tools to:

  • 🔍 Query Metadata: Search for patients, studies, series, and instances using various criteria.
  • 📄 Read DICOM Reports (PDF): Retrieve DICOM instances containing encapsulated PDFs (e.g., clinical reports) and extract the text content.
  • 📥 Download DICOM Files: Download DICOM instances from the server to a local directory using C-GET. Retrieve entire series or specific instances for local analysis and processing.
  • ➡️ Send DICOM Images: Send series or studies to other DICOM destinations, e.g. AI endpoints for image segmentation, classification, etc.
  • ⚙️ Utilities: Manage connections and understand query options.

🚀 Quick Start

📥 Installation

Install using uv or pip:

uv tool install dicom-mcp

Or by cloning the repository:

# Clone and set up development environment
git clone https://github.com/Y5ive9ine/dicom-mcp
cd dicom mcp

# Create and activate virtual environment
uv venv
source .venv/bin/activate

# Install with test dependencies
uv pip install -e ".[dev]"

⚙️ Configuration

dicom-mcp requires a YAML configuration file (config.yaml or similar) defining DICOM nodes and calling AE titles. Adapt the configuration or keep as is for compatibility with the sample ORTHANC Server.

nodes:
  main:
    host: "localhost"
    port: 4242 
    ae_title: "ORTHANC"
    description: "Local Orthanc DICOM server"

current_node: "main"
calling_aet: "MCPSCU" 

[!WARNING] DICOM-MCP is not meant for clinical use, and should not be connected with live hospital databases or databases with patient-sensitive data. Doing so could lead to both loss of patient data, and leakage of patient data onto the internet. DICOM-MCP can be used with locally hosted open-weight LLMs for complete data privacy.

(Optional) Sample ORTHANC server

If you don't have a DICOM server available, you can run a local ORTHANC server using Docker:

Clone the repository and install test dependencies pip install -e ".[dev]

cd tests
docker ocmpose up -d
cd ..
pytest # uploads dummy pdf data to ORTHANC server

UI at http://localhost:8042

🔌 MCP Integration

Add to your client configuration (e.g. claude_desktop_config.json):

{
  "mcpServers": {
    "dicom": {
      "command": "uv",
      "args": ["tool","dicom-mcp", "/path/to/your_config.yaml"]
    }
  }
}

For development:

{
    "mcpServers": {
        "arxiv-mcp-server": {
            "command": "uv",
            "args": [
                "--directory",
                "path/to/cloned/dicom-mcp",
                "run",
                "dicom-mcp",
                "/path/to/your_config.yaml"
            ]
        }
    }
}

🛠️ Tools Overview

dicom-mcp provides four categories of tools for interaction with DICOM servers and DICOM data.

🔍 Query Metadata

  • query_patients: Search for patients based on criteria like name, ID, or birth date.
  • query_studies: Find studies using patient ID, date, modality, description, accession number, or Study UID.
  • query_series: Locate series within a specific study using modality, series number/description, or Series UID.
  • query_instances: Find individual instances (images/objects) within a series using instance number or SOP Instance UID

📄 Read DICOM Reports (PDF)

  • extract_pdf_text_from_dicom: Retrieve a specific DICOM instance containing an encapsulated PDF and extract its text content.

📥 Download DICOM Files

  • retrieve_dicom_instances: Download DICOM instances from the server to a local directory using C-GET. Retrieve entire series or specific instances for local analysis and processing.

➡️ Send DICOM Images

  • move_series: Send a specific DICOM series to another configured DICOM node using C-MOVE.
  • move_study: Send an entire DICOM study to another configured DICOM node using C-MOVE.

⚙️ Utilities

  • list_dicom_nodes: Show the currently active DICOM node and list all configured nodes.
  • switch_dicom_node: Change the active DICOM node for subsequent operations.
  • verify_connection: Test the DICOM network connection to the currently active node using C-ECHO.
  • get_attribute_presets: List the available levels of detail (minimal, standard, extended) for metadata query results.<p>

Example interaction

The tools can be chained together to answer complex questions:

<div align="center"> <img src="images/example.png" alt="My Awesome Diagram" width="700"> </div>

📈 Contributing

Running Tests

Tests require a running Orthanc DICOM server. You can use Docker:

# Navigate to the directory containing docker-compose.yml (e.g., tests/)
cd tests
docker-compose up -d

Run tests using pytest:

# From the project root directory
pytest

Stop the Orthanc container:

cd tests
docker-compose down

Debugging

Use the MCP Inspector for debugging the server communication:

npx @modelcontextprotocol/inspector uv run dicom-mcp /path/to/your_config.yaml --transport stdio

🙏 Acknowledgments

Usage Examples

Basic Patient Query

# Find all patients with name starting with "SMITH"
patients = query_patients(name_pattern="SMITH*")

Study Query with Date Range

# Find CT studies from January 2023
studies = query_studies(
    modality_in_study="CT", 
    study_date="20230101-20230131"
)

Download DICOM Files

# Download entire series to local directory
result = retrieve_dicom_instances(
    series_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.2005",
    output_directory="/path/to/local/dicom/files"
)

# Download specific instance only
result = retrieve_dicom_instances(
    series_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.2005",
    sop_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.3001",
    output_directory="/path/to/local/dicom/files"
)

print(f"Downloaded {result['total_files']} files ({result['total_size_mb']} MB)")
print(f"Files saved to: {result['output_directory']}")

# Files will be named with meaningful information like:
# "12345_SMITH_20230215_CT_CHEST_AXIAL_Inst001.dcm"
# "12345_SMITH_20230215_CT_CHEST_AXIAL_Inst002.dcm"

Extract PDF Reports

# Extract text from a DICOM PDF report
result = extract_pdf_text_from_dicom(
    study_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.1009",
    series_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.2005", 
    sop_instance_uid="1.2.840.113619.2.1.1.322.1600364094.412.3001"
)

if result["success"]:
    print("Report text:", result["text_content"])

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured