Delphi Build MCP Server
Enables AI coding agents to compile Delphi projects programmatically by parsing .dproj files, executing the Delphi compiler, and returning structured error results with multi-language support and automatic configuration generation from IDE build logs.
README
Delphi Build MCP Server
A Model Context Protocol (MCP) server that enables AI coding agents like Claude Code to compile Delphi projects programmatically.
Features
- Automatic Configuration: Generate config from IDE build logs with multi-line parsing
- Smart Compilation: Reads .dproj files for build settings and compiler flags
- Filtered Output: Returns only errors, filters out warnings and hints
- Multi-Language Support: Parses both English and German compiler output
- Response File Support: Handles command lines >8000 characters automatically
- Multi-Platform: Supports Win32 and Win64 compilation
- 80+ Library Paths: Successfully handles projects with extensive dependencies
- Environment Variables: Auto-expands
${USERNAME}in paths - MCP Compatible: Works with Claude Code, Cline, and other MCP clients
Quick Start
1. Install
# Install UV if you haven't already
# Windows: powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# macOS/Linux: curl -LsSf https://astral.sh/uv/install.sh | sh
# Or: pip install uv
cd delphi-build-mcp-server
uv sync
2. Generate Configuration
In Delphi IDE:
- Tools -> Options -> Building -> Show compiler progress -> "Verbose"
- Build your project
- View -> Messages -> Right-click -> Copy All
- Save to
build.log
Then generate config:
uv run python -m src.config_generator build.log
Or use the Python API:
from src.config_generator import ConfigGenerator
from pathlib import Path
generator = ConfigGenerator()
result = generator.generate_from_build_log(
build_log_path=Path("build.log"),
output_path=Path("delphi_config.toml")
)
print(result.message)
3. Configure Claude Code
Edit %APPDATA%\Claude\claude_desktop_config.json:
Using UV (Recommended):
{
"mcpServers": {
"delphi-build": {
"command": "uv",
"args": [
"run",
"--directory",
"X:\\path\\to\\delphi-build-mcp-server",
"python",
"main.py"
],
"env": {
"DELPHI_CONFIG": "X:\\path\\to\\delphi_config.toml"
}
}
}
}
Or use direct Python path:
{
"mcpServers": {
"delphi-build": {
"command": "X:\\path\\to\\delphi-build-mcp-server\\.venv\\Scripts\\python.exe",
"args": ["X:\\path\\to\\delphi-build-mcp-server\\main.py"],
"env": {
"DELPHI_CONFIG": "X:\\path\\to\\delphi_config.toml"
}
}
}
}
4. Use in Claude Code
Please compile my Delphi project at X:\MyProject\MyApp.dproj
Tools
compile_delphi_project
Compile a Delphi project and return parsed results.
Parameters:
project_path(required): Path to .dpr or .dproj fileforce_build_all: Force rebuild all unitsoverride_config: Override build config (Debug/Release)override_platform: Override platform (Win32/Win64)additional_search_paths: Extra search pathsadditional_flags: Additional compiler flags
Returns:
success: Whether compilation succeedederrors: List of compilation errors (warnings/hints filtered)compilation_time_seconds: Time takenoutput_executable: Path to compiled EXEstatistics: Compilation statistics
generate_config_from_build_log
Generate delphi_config.toml from an IDE build log.
Parameters:
build_log_path(required): Path to build log fileoutput_config_path: Output file path (default: delphi_config.toml)use_env_vars: Replace paths with ${USERNAME} (default: true)
Returns:
success: Whether generation succeededconfig_file_path: Path to generated configstatistics: Paths found and processeddetected_info: Delphi version, platform, build config
Documentation
- QUICKSTART.md - 5-minute setup guide
- DOCUMENTATION.md - Complete reference
- PRD.md - Product requirements and specifications
Project Structure
delphi-build-mcp-server/
├── main.py # MCP server entry point
├── src/
│ ├── models.py # Pydantic data models
│ ├── buildlog_parser.py # Parse IDE build logs
│ ├── dproj_parser.py # Parse .dproj files
│ ├── config.py # Load TOML configuration
│ ├── output_parser.py # Parse compiler output
│ ├── config_generator.py # Generate TOML configs
│ └── compiler.py # Compiler orchestration
├── delphi_config.toml.template # Configuration template
├── pyproject.toml # Python project config
├── QUICKSTART.md # Quick start guide
├── DOCUMENTATION.md # Complete documentation
└── PRD.md # Product requirements
Requirements
- Python 3.10+
- Delphi 11, 12, or 13
- MCP-compatible client (Claude Code, Cline, etc.)
How It Works
Note: The server automatically handles response files for projects with 80+ library paths (command lines >8000 chars) and parses both English and German compiler output.
1. AI Agent calls compile_delphi_project
|
v
2. MCP Server loads delphi_config.toml
- Delphi installation paths
- Library search paths
|
v
3. Parse .dproj file
- Active configuration (Debug/Release)
- Compiler flags and defines
- Project-specific search paths
|
v
4. Build compiler command
- Merge config file + .dproj settings
- Add search paths, namespaces, aliases
|
v
5. Execute dcc32.exe/dcc64.exe
|
v
6. Parse output
- Extract errors (E####, F####)
- Filter warnings (W####) and hints (H####)
|
v
7. Return structured result to AI
Example Usage
Compile a Project
from src.compiler import DelphiCompiler
from pathlib import Path
compiler = DelphiCompiler()
result = compiler.compile_project(
project_path=Path("X:/MyProject/MyApp.dproj")
)
if result.success:
print(f"Compilation successful: {result.output_executable}")
else:
print(f"Compilation failed with {len(result.errors)} errors:")
for error in result.errors:
print(f" {error.file}({error.line},{error.column}): {error.message}")
Generate Config from Build Log
from src.config_generator import ConfigGenerator
from pathlib import Path
generator = ConfigGenerator(use_env_vars=True)
result = generator.generate_from_build_log(
build_log_path=Path("build.log"),
output_path=Path("delphi_config.toml")
)
print(f"{result.message}")
print(f" Detected: Delphi {result.detected_info.delphi_version}")
print(f" Platform: {result.detected_info.platform}")
print(f" Paths found: {result.statistics['unique_paths']}")
Troubleshooting
"Configuration file not found"
Generate it from a build log:
uv run python -m src.config_generator build.log
"Unit not found"
Regenerate config from a fresh IDE build log that includes all dependencies.
"Compiler not found"
Verify delphi.root_path in delphi_config.toml points to your Delphi installation.
Development
Install Development Dependencies
uv pip install -e ".[dev]"
Run Tests
uv run pytest
Test Sample Projects
Two sample projects are included for testing:
# Test successful compilation
uv run python test_compile_samples.py
- sample/working/Working.dproj - Compiles successfully
- sample/broken/Broken.dproj - Intentionally has errors for testing error parsing
Code Formatting
uv run black src/
uv run ruff check src/
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for guidelines.
License
MIT License - see LICENSE file for details.
Support
- Documentation: DOCUMENTATION.md
- Quick Start: QUICKSTART.md
- Issues: https://github.com/your-org/delphi-build-mcp-server/issues
Acknowledgments
- Built with Model Context Protocol
- Designed for Claude Code
- Supports Embarcadero Delphi
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.