Delia
Routes AI tasks to appropriate local LLM models (quick, coder, MoE, thinking) with automatic model selection, multi-backend support (Ollama, llama.cpp, Gemini), and parallel processing capabilities.
README
Delia
A Model Context Protocol (MCP) server that cultivates your local LLM garden. Plant a seed, let Delia pick the right vine, and harvest a fresh melon.
Delia - from Greek Δηλία, "from Delos" (the sacred island). Also, she grows watermelons.
Features
- Smart Vine Selection: Routes seeds to the right vine - quick (7B), coder (14B+), moe (30B+), or thinking
- Multi-Garden Support: Ollama, llama.cpp, and Gemini gardens with automatic failover
- Context-Aware Routing: Handles large seeds with appropriate context windows
- Circuit Breaker: Drought protection with graceful recovery
- Parallel Processing: Tends multiple seeds simultaneously
- Authentication: Optional greenhouse access control
- Usage Tracking: Per-gardener quotas and harvest monitoring
- Dashboard: Real-time garden status with watermelon-themed activity feed
Requirements
Hardware
| Component | Minimum | Recommended | Large Models |
|---|---|---|---|
| GPU | 4GB VRAM | 12GB VRAM | 24GB+ VRAM |
| RAM | 8GB | 16GB | 32GB+ |
| Storage | 10GB | 30GB | 50GB+ |
Software
- Python 3.11+
- uv package manager
- One or more backends:
Quick Start
# Clone and install
git clone https://github.com/zbrdc/delia.git
cd delia
uv sync
# Pull models (examples - choose based on your hardware)
ollama pull qwen3:14b # General purpose
ollama pull qwen2.5-coder:14b # Code specialized
ollama pull qwen3:30b-a3b # Complex reasoning
# Run server
uv run python mcp_server.py
Integration
Delia works with AI coding assistants via MCP. Choose your tool:
VS Code / GitHub Copilot
Add to ~/.config/Code/User/mcp.json:
{
"servers": {
"delia": {
"command": "uv",
"args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"],
"type": "stdio"
}
}
}
Reload VS Code to activate.
Claude Code
Create ~/.claude/mcp.json:
{
"mcpServers": {
"delia": {
"command": "uv",
"args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
}
}
}
Then run claude and use @delia to delegate tasks.
Gemini CLI
Option 1: HTTP Mode (Recommended)
# Start server
uv run python mcp_server.py --transport sse --port 8200
Add to ~/.gemini/settings.json:
{
"mcpServers": {
"delia": {
"url": "http://localhost:8200/sse",
"transport": "sse"
}
}
}
Option 2: STDIO Mode
Add to ~/.gemini/settings.json:
{
"mcpServers": {
"delia": {
"command": "uv",
"args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
}
}
}
GitHub Copilot CLI
Create ~/.copilot-cli/mcp.json:
{
"servers": {
"delia": {
"command": "uv",
"args": ["run", "--directory", "/path/to/delia", "python", "mcp_server.py"]
}
}
}
Configuration
Backend Configuration
Edit settings.json in the project root:
{
"backends": [
{
"id": "ollama-local",
"name": "Ollama Local",
"provider": "ollama",
"type": "local",
"url": "http://localhost:11434",
"enabled": true,
"priority": 1,
"models": {
"quick": "qwen3:14b",
"coder": "qwen2.5-coder:14b",
"moe": "qwen3:30b-a3b",
"thinking": "deepseek-r1:14b"
}
}
],
"routing": {
"prefer_local": true,
"fallback_enabled": true
}
}
Gemini Cloud Backend (Optional)
Add Gemini as a cloud fallback:
# Install dependency
uv add google-generativeai
# Set API key
export GEMINI_API_KEY="your-key-from-aistudio.google.com"
Add to settings.json:
{
"id": "gemini-cloud",
"name": "Gemini Cloud",
"provider": "gemini",
"type": "remote",
"url": "https://generativelanguage.googleapis.com",
"enabled": true,
"priority": 10,
"models": {
"quick": "gemini-2.0-flash",
"coder": "gemini-2.0-flash",
"moe": "gemini-2.0-flash"
}
}
Authentication (Optional)
For HTTP mode with multiple users:
# Quick setup
python setup_auth.py
# Or manually
export DELIA_AUTH_ENABLED=true
export DELIA_JWT_SECRET="your-secure-secret"
Supports username/password and Microsoft 365 OAuth.
Transport Modes
# STDIO (default) - for VS Code, Claude Code, Copilot CLI
uv run python mcp_server.py
# HTTP/SSE - for Gemini CLI, web clients, remote access
uv run python mcp_server.py --transport sse --port 8200
# View all options
uv run python mcp_server.py --help
Tools
Delia provides these MCP tools:
| Tool | Description |
|---|---|
delegate |
Execute tasks with automatic model selection |
think |
Extended reasoning for complex problems |
batch |
Process multiple tasks in parallel |
health |
Check backend status and statistics |
models |
List available models and tiers |
switch_backend |
Switch between backends at runtime |
switch_model |
Change model for a tier |
get_model_info |
Get model specifications |
Vine Selection
Delia picks the right vine for every seed:
| Vine | Size | Best For |
|---|---|---|
| Quick | 7B-14B | Summaries, simple questions |
| Coder | 14B-30B | Generation, review, debugging |
| MoE | 30B+ | Architecture, critique, analysis |
| Thinking | Specialized | Extended reasoning, research |
Override with hints in your prompt: "use the large model" or "quick answer".
Troubleshooting
Server won't start
# Check Ollama is running
curl http://localhost:11434/api/tags
# Test server import
uv run python -c "import mcp_server; print('OK')"
MCP not connecting
- Verify path in config points to correct directory
- Reload VS Code / restart Claude Code
- Check logs:
~/.cache/delia/live_logs.json
"Unknown" responses
- Backend not running or unreachable
- Check
settings.jsonconfiguration - Run
curl http://localhost:11434/health
Slow responses
- Try smaller models
- Check system resources (
nvidia-smi,htop) - Reduce context size in
settings.json
Performance
Typical harvest times (modern hardware):
- Quick vine: 2-5 seconds
- Coder vine: 5-15 seconds
- MoE/Thinking vines: 30-60 seconds
License
BSD 3-Clause
Acknowledgments
- Ollama - Local LLM runtime
- MCP Python SDK - Protocol implementation
- Qwen - Base models
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.