DeepView MCP
A Model Context Protocol server that enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.
ai-1st
README
DeepView MCP
DeepView MCP is a Model Context Protocol server that enables IDEs like Cursor and Windsurf to analyze large codebases using Gemini's extensive context window.
Features
- Load an entire codebase from a single text file (e.g., created with tools like repomix)
- Query the codebase using Gemini's large context window
- Connect to IDEs that support the MCP protocol, like Cursor and Windsurf
- Configurable Gemini model selection via command-line arguments
Prerequisites
- Python 3.13+
- Gemini API key from Google AI Studio
Installation
Using pip
pip install deepview-mcp
Usage
Starting the Server
Note: you don't need to start the server manually. These parameters are configured in your MCP setup in your IDE (see below).
# Basic usage with default settings
deepview-mcp [path/to/codebase.txt]
# Specify a different Gemini model
deepview-mcp [path/to/codebase.txt] --model gemini-2.0-pro
# Change log level
deepview-mcp [path/to/codebase.txt] --log-level DEBUG
The codebase file parameter is optional. If not provided, you'll need to specify it when making queries.
Command-line Options
--model MODEL
: Specify the Gemini model to use (default: gemini-2.0-flash-lite)--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
: Set the logging level (default: INFO)
Using with an IDE (Cursor/Windsurf/...)
- Open IDE settings
- Navigate to the MCP configuration
- Add a new MCP server with the following configuration:
{ "mcpServers": { "deepview": { "command": "/path/to/deepview-mcp", "args": [], "env": { "GEMINI_API_KEY": "your_gemini_api_key" } } } }
Setting a codebase file is optional. If you are working with the same codebase, you can set the default codebase file using the following configuration:
{
"mcpServers": {
"deepview": {
"command": "/path/to/deepview-mcp",
"args": ["/path/to/codebase.txt"],
"env": {
"GEMINI_API_KEY": "your_gemini_api_key"
}
}
}
}
Here's how to specify the Gemini version to use:
{
"mcpServers": {
"deepview": {
"command": "/path/to/deepview-mcp",
"args": ["--model", "gemini-2.5-pro-exp-03-25"],
"env": {
"GEMINI_API_KEY": "your_gemini_api_key"
}
}
}
}
- Reload MCP servers configuration
Available Tools
The server provides one tool:
deepview
: Ask a question about the codebase- Required parameter:
question
- The question to ask about the codebase - Optional parameter:
codebase_file
- Path to a codebase file to load before querying
- Required parameter:
Preparing Your Codebase
DeepView MCP requires a single file containing your entire codebase. You can use repomix to prepare your codebase in an AI-friendly format.
Using repomix
- Basic Usage: Run repomix in your project directory to create a default output file:
# Make sure you're using Node.js 18.17.0 or higher
npx repomix
This will generate a repomix-output.xml
file containing your codebase.
- Custom Configuration: Create a configuration file to customize which files get packaged and the output format:
npx repomix --init
This creates a repomix.config.json
file that you can edit to:
- Include/exclude specific files or directories
- Change the output format (XML, JSON, TXT)
- Set the output filename
- Configure other packaging options
Example repomix Configuration
Here's an example repomix.config.json
file:
{
"include": [
"**/*.py",
"**/*.js",
"**/*.ts",
"**/*.jsx",
"**/*.tsx"
],
"exclude": [
"node_modules/**",
"venv/**",
"**/__pycache__/**",
"**/test/**"
],
"output": {
"format": "xml",
"filename": "my-codebase.xml"
}
}
For more information on repomix, visit the repomix GitHub repository.
License
MIT
Author
Dmitry Degtyarev (ddegtyarev@gmail.com)
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.