Decide Test MCP

Decide Test MCP

Enables Claude to generate executable test cases from decision tables in CSV, JSON, or Markdown formats. Provides intelligent test planning guidance and generates Playwright/API test code with TypeScript support.

Category
Visit Server

README

Decide Test MCP

Claude-driven testing workflow that generates test cases from decision tables, provides intelligent guidance for test planning, and generates executable test code.

Features

  • πŸ€– Claude-Driven Test Planning: Works with Claude via MCP for intelligent test guidance
  • πŸ“Š Decision Table Parsing: Supports CSV, JSON, and Markdown formats
  • 🎭 Playwright Integration: Generates executable Playwright tests
  • πŸ”Œ API Testing: Creates API test suites with proper authentication
  • πŸ”§ MCP Server: Integrates seamlessly with Claude Code
  • πŸ“ TypeScript Support: Generates type-safe test code
  • πŸ’° Zero Cost: No external API keys required

Installation

As MCP Server (for Claude Code)

  1. Build the package:
pnpm install
pnpm build
  1. Add to Claude Code MCP config (~/.claude-code/mcp.json):
{
  "mcpServers": {
    "decide-test": {
      "command": "node",
      "args": ["/absolute/path/to/dist/index.js"]
    }
  }
}
  1. Restart Claude Code

As Standalone Package

pnpm install
pnpm build

Usage

Via Claude Code

Once the MCP server is installed, you can use it in Claude Code:

Generate test cases from the decision table at docs/examples/decision-tables/login-decision-table.csv

Claude Code will:

  1. Parse the decision table
  2. Explore each test case with AI agents
  3. Generate Playwright test code
  4. Save to tests/e2e/generated/

Programmatic Usage

import {
  decisionTableParser,
  WebAgent,
  testCodeGenerator
} from 'decide-test-mcp';

// 1. Parse decision table
const table = await decisionTableParser.parse(
  'docs/examples/decision-tables/login-decision-table.csv'
);

// 2. Get guidance for test planning (you provide the steps)
const webAgent = new WebAgent();
const testSteps = [];

for (const testCase of table.test_cases) {
  // Get guidance (example steps and recommendations)
  const guidance = webAgent.getExplorationGuidance({
    url: 'http://localhost:3000',
    test_case: testCase,
    objective: testCase.name,
  });

  console.log(guidance.suggested_approach);
  console.log('Example steps:', guidance.example_steps);

  // You define the actual test steps based on guidance
  const steps = [
    { action: 'navigate', target: 'http://localhost:3000/login', description: 'Go to login' },
    { action: 'fill', selector: 'input[name="email"]', value: 'test@example.com', description: 'Enter email' },
    { action: 'click', selector: 'button[type="submit"]', description: 'Click login' },
  ];

  testSteps.push({
    test_case_id: testCase.id,
    type: 'web',
    steps,
  });
}

// 3. Generate test code
const generated = await testCodeGenerator.generate({
  test_cases: table.test_cases,
  steps: testSteps,
  framework: 'playwright',
  output_path: 'tests/e2e/generated/',
  language: 'typescript',
});

console.log(`Generated ${generated.files_generated.length} test files`);

MCP Tools

1. parse_decision_table

Parse a decision table and generate test case specifications.

Example:

{
  "table_path": "docs/examples/decision-tables/login-decision-table.csv",
  "format": "csv"
}

2. get_web_test_guidance

Get guidance and example steps for planning web tests. Claude uses this to understand what test steps to create.

Example:

{
  "url": "http://localhost:3000",
  "test_case": {...},
  "objective": "Login with valid credentials"
}

Returns: Suggested approach, example steps, and guidance for Claude to plan the actual test steps.

3. execute_web_test

Execute predefined web test steps using Playwright.

Example:

{
  "url": "http://localhost:3000",
  "test_case": {...},
  "objective": "Login with valid credentials",
  "steps": [
    { "action": "navigate", "target": "http://localhost:3000/login", "description": "Go to login" },
    { "action": "fill", "selector": "input[name='email']", "value": "test@example.com", "description": "Enter email" },
    { "action": "click", "selector": "button[type='submit']", "description": "Click login" }
  ],
  "headless": true,
  "screenshot_dir": "./screenshots"
}

4. get_api_test_guidance

Get guidance and example steps for planning API tests.

Example:

{
  "base_url": "http://localhost:3000/api",
  "test_case": {...},
  "objective": "Create trip via API",
  "auth": {
    "type": "bearer",
    "credentials": {"token": "..."}
  }
}

Returns: Suggested approach, example API steps, and guidance for Claude to plan the actual API test steps.

5. execute_api_test

Execute predefined API test steps.

Example:

{
  "base_url": "http://localhost:3000/api",
  "test_case": {...},
  "objective": "Create trip via API",
  "steps": [
    { "method": "POST", "endpoint": "/auth/login", "body": {...}, "expected_status": 200 },
    { "method": "POST", "endpoint": "/trips", "body": {...}, "expected_status": 201 }
  ],
  "auth": {
    "type": "bearer"
  }
}

6. generate_test_code

Generate executable test code from test cases and steps.

Example:

{
  "test_cases": [...],
  "steps": [...],
  "framework": "playwright",
  "output_path": "tests/e2e/generated/",
  "language": "typescript"
}

7. run_generated_tests

Execute generated tests and return results.

Example:

{
  "test_path": "tests/e2e/generated/login.spec.ts",
  "framework": "playwright",
  "reporter": "list"
}

Decision Table Formats

CSV Format

Email,Password,Action,Expected Result,Priority
valid@example.com,ValidPass123,Click Login,Login successful,high
invalid@example.com,ValidPass123,Click Login,Show error message,medium

JSON Format

{
  "feature": "User Login",
  "rules": [
    {
      "id": "TC001",
      "conditions": {
        "email": "valid",
        "password": "valid"
      },
      "actions": ["click_login"],
      "expected": ["redirect_to_dashboard"]
    }
  ]
}

Markdown Format

# User Login

| Email | Password | Action | Expected Result |
|-------|----------|--------|----------------|
| valid | valid | Click Login | Login successful |
| invalid | valid | Click Login | Show error |

Examples

See docs/examples/decision-tables/ for complete examples:

  • login-decision-table.csv - User authentication tests
  • trip-creation-decision-table.json - Trip creation with tier limits
  • collaboration-decision-table.md - Collaboration & permissions

Development

# Install dependencies
pnpm install

# Build
pnpm build

# Run in development mode
pnpm dev

# Run tests
pnpm test

Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚         MCP Server                  β”‚
β”‚  (Model Context Protocol)           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
              β”‚
    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”
    β”‚         β”‚         β”‚
    β–Ό         β–Ό         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Parser β”‚ β”‚Agentsβ”‚ β”‚Generator β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Troubleshooting

MCP Server Not Appearing in Claude Code

  1. Check MCP config path is correct
  2. Verify Node.js is accessible
  3. Check server logs: ~/.claude-code/logs/mcp-ai-testing.log
  4. Restart Claude Code

Test Execution Failing

  1. Check application is running at specified URL
  2. Review test steps for correctness
  3. Try with headless: false to see browser in action
  4. Check selector specificity

Test Generation Issues

  1. Ensure test cases and steps are complete
  2. Check output directory permissions
  3. Review generated code for syntax errors

License

MIT

Support

For issues and questions:

  • Documentation: docs/AI_TESTING_WORKFLOW.md

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured