Daytona MCP Python Interpreter

Daytona MCP Python Interpreter

A Model Context Protocol server that allows execution of Python code within Daytona workspaces, providing a secure and isolated environment for executing and managing Python scripts.

nkkko

Developer Tools
OS Automation
Virtualization
Visit Server

Tools

python_interpreter

Execute Python code in a Daytona workspace

README

Daytona MCP Interpreter

A Model Context Protocol server that provides Python code execution capabilities in ephemeral Daytona sandboxes.

Daytona MCP Server in Claude Desktop

Overview

Daytona MCP Interpreter enables AI assistants like Claude to execute Python code and shell commands in secure, isolated environments. It implements the Model Context Protocol (MCP) standard to provide tools for:

  • Python code execution in sandboxed environments
  • Shell command execution
  • File management (upload/download)
  • Git repository cloning
  • Web preview generation for running servers

All execution happens in ephemeral Daytona workspaces that are automatically cleaned up after use.

Installation

  1. Install uv if you haven't already:
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create and activate virtual environment.

If you have an existing env, deactivate and remove it first:

deactivate
rm -rf .venv

Create and activate a new virtual environment:

uv venv
source .venv/bin/activate

(On Windows: .venv\Scripts\activate)

  1. Install dependencies:
uv add "mcp[cli]" pydantic python-dotenv "daytona-sdk>=0.10.5"

Note: This project requires daytona-sdk version 0.10.5 or higher. Earlier versions have incompatible FileSystem API.

Environment Variables

Configure these environment variables for proper operation:

  • MCP_DAYTONA_API_KEY: Required API key for Daytona authentication
  • MCP_DAYTONA_SERVER_URL: Server URL (default: https://app.daytona.io/api)
  • MCP_DAYTONA_TIMEOUT: Request timeout in seconds (default: 180.0)
  • MCP_DAYTONA_TARGET: Target region (default: eu)
  • MCP_VERIFY_SSL: Enable SSL verification (default: false)

Development

Run the server directly:

uv run src/daytona_mcp_interpreter/server.py

Or if uv is not in your path:

/Users/USER/.local/bin/uv run ~LOCATION/daytona-mcp-interpreter/src/daytona_mcp_interpreter/server.py

Use MCP Inspector to test the server:

npx @modelcontextprotocol/inspector \
  uv \
  --directory . \
  run \
  src/daytona_mcp_interpreter/server.py

View logs:

tail -f /tmp/daytona-interpreter.log

Integration with Claude Desktop

Watch the demo video

  1. Configure in Claude Desktop (or other MCP-compatible clients):

On MacOS, edit: ~/Library/Application Support/Claude/claude_desktop_config.json On Windows, edit: %APPDATA%\Claude\claude_desktop_config.json

{
    "mcpServers": {
        "daytona-interpreter": {
            "command": "/Users/USER/.local/bin/uv",
            "args": [
                "--directory",
                "/Users/USER/dev/daytona-mcp-interpreter",
                "run",
                "src/daytona_mcp_interpreter/server.py"
            ],
            "env": {
                "PYTHONUNBUFFERED": "1",
                "MCP_DAYTONA_API_KEY": "api_key",
                "MCP_DAYTONA_SERVER_URL": "api_server_url",
                "MCP_DAYTONA_TIMEOUT": "30.0",
                "MCP_VERIFY_SSL": "false",
                "PATH": "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin"
            }
        }
    }
}
  1. Restart Claude Desktop
  2. The Daytona Python interpreter tools will be available in Claude

Available Tools

Shell Exec

Executes shell commands in the Daytona workspace.

# Example: List files
ls -la

# Example: Install a package
pip install pandas

File Download

Downloads files from the Daytona workspace with smart handling for large files.

Basic Usage:

file_download(file_path="/path/to/file.txt")

Advanced Usage:

# Set custom file size limit
file_download(file_path="/path/to/large_file.csv", max_size_mb=10.0)

# Download partial content for large files
file_download(file_path="/path/to/large_file.csv", download_option="download_partial", chunk_size_kb=200)

# Convert large file to text
file_download(file_path="/path/to/large_file.pdf", download_option="convert_to_text")

# Compress file before downloading
file_download(file_path="/path/to/large_file.bin", download_option="compress_file")

# Force download despite size
file_download(file_path="/path/to/large_file.zip", download_option="force_download")

File Upload

Uploads files to the Daytona workspace. Supports both text and binary files.

Basic Usage:

# Upload a text file
file_upload(file_path="/workspace/example.txt", content="Hello, World!")

Advanced Usage:

# Upload a text file with specific path
file_upload(
    file_path="/workspace/data/config.json",
    content='{"setting": "value", "enabled": true}'
)

# Upload a binary file using base64 encoding
import base64
with open("local_image.png", "rb") as f:
    base64_content = base64.b64encode(f.read()).decode('utf-8')

file_upload(
    file_path="/workspace/images/uploaded.png",
    content=base64_content,
    encoding="base64"
)

# Upload without overwriting existing files
file_upload(
    file_path="/workspace/important.txt",
    content="New content",
    overwrite=False
)

Git Clone

Clones a Git repository into the Daytona workspace for analysis and code execution.

Basic Usage:

git_clone(repo_url="https://github.com/username/repository.git")

Advanced Usage:

# Clone a specific branch
git_clone(
    repo_url="https://github.com/username/repository.git",
    branch="develop"
)

# Clone to a specific directory with full history
git_clone(
    repo_url="https://github.com/username/repository.git",
    target_path="my_project",
    depth=0  # 0 means full history
)

# Clone with Git LFS support for repositories with large files
git_clone(
    repo_url="https://github.com/username/large-files-repo.git",
    lfs=True
)

Web Preview

Generates a preview URL for web servers running inside the Daytona workspace.

Basic Usage:

# Generate a preview link for a web server running on port 3000
web_preview(port=3000)

Advanced Usage:

# Generate a preview link with a descriptive name
web_preview(
    port=8080,
    description="React Development Server"
)

# Generate a link without checking if server is running
web_preview(
    port=5000,
    check_server=False
)

Example:

# First run a simple web server using Python via the shell
shell_exec(command="python -m http.server 8000 &")

# Then generate a preview link for the server
web_preview(port=8000, description="Python HTTP Server")

<a href="https://glama.ai/mcp/servers/hj7jlxkxpk"><img width="380" height="200" src="https://glama.ai/mcp/servers/hj7jlxkxpk/badge" alt="Daytona Python Interpreter MCP server" /></a> smithery badge

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
MCP Package Docs Server

MCP Package Docs Server

Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.

Featured
Local
TypeScript
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Linear MCP Server

Linear MCP Server

Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.

Featured
JavaScript
mermaid-mcp-server

mermaid-mcp-server

A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.

Featured
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python