Dataproc MCP Server

Dataproc MCP Server

Enables AI assistants to manage Google Cloud Dataproc clusters and jobs through a standardized interface. Supports cluster creation/deletion, job submission (Spark, PySpark, Hive, etc.), and serverless batch operations.

Category
Visit Server

README

Dataproc MCP Server

A Model Context Protocol (MCP) server that provides tools for managing Google Cloud Dataproc clusters and jobs. This server enables AI assistants to interact with Dataproc resources through a standardized interface.

Features

Cluster Management

  • List Clusters: View all clusters in a project and region
  • Create Cluster: Provision new Dataproc clusters with custom configurations
  • Delete Cluster: Remove existing clusters
  • Get Cluster: Retrieve detailed information about specific clusters

Job Management

  • Submit Jobs: Run Spark, PySpark, Spark SQL, Hive, Pig, and Hadoop jobs
  • List Jobs: View jobs across clusters with filtering options
  • Get Job: Retrieve detailed job information and status
  • Cancel Job: Stop running jobs

Batch Operations

  • Create Batch Jobs: Submit serverless Dataproc batch jobs
  • List Batch Jobs: View all batch jobs in a region
  • Get Batch Job: Retrieve detailed batch job information
  • Delete Batch Job: Remove batch jobs

Installation

Prerequisites

  • Python 3.11 or higher
  • Google Cloud SDK configured with appropriate permissions
  • Dataproc API enabled in your Google Cloud project

Install from Source

# Clone the repository
git clone <repository-url>
cd dataproc-mcp

# Install with uv (recommended)
uv pip install --system -e .

# Or install with pip
pip install -e .

# Install development dependencies
uv pip install --system -e ".[dev]"

Configuration

Authentication

The server supports multiple authentication methods:

  1. Service Account Key (Recommended for production):

    export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
    
  2. Application Default Credentials:

    gcloud auth application-default login
    
  3. Compute Engine Service Account (when running on GCE)

Required Permissions

Ensure your service account or user has the following IAM roles:

  • roles/dataproc.editor - For cluster and job management
  • roles/storage.objectViewer - For accessing job files in Cloud Storage
  • roles/compute.networkUser - For VPC network access (if using custom networks)

Usage

Running the Server

The server supports multiple transport protocols:

# STDIO (default) - for command-line tools and MCP clients
python -m dataproc_mcp_server

# HTTP - REST API over HTTP using streamable-http transport
DATAPROC_MCP_TRANSPORT=http python -m dataproc_mcp_server

# SSE - Server-Sent Events for real-time communication
DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server

# Run with entry point script (STDIO only)
dataproc-mcp-server

Transport Configuration

  • STDIO (default): Standard input/output communication for command-line tools and MCP clients
  • HTTP: REST API over HTTP using streamable-http transport
    • Server URL: http://localhost:8000/mcp
    • Accessible via web clients and HTTP-based MCP clients
  • SSE: Server-Sent Events for real-time bidirectional communication
    • Server URL: http://localhost:8000/sse
    • Supports streaming responses and live updates

Environment Variables

# Transport type (stdio, http, sse)
export DATAPROC_MCP_TRANSPORT=http

# Server host (for HTTP/SSE transports)
export DATAPROC_MCP_HOST=0.0.0.0

# Server port (for HTTP/SSE transports)
export DATAPROC_MCP_PORT=8080

# Authentication
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"

MCP Client Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "dataproc": {
      "command": "python",
      "args": ["-m", "dataproc_mcp_server"],
      "env": {
        "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account.json"
      }
    }
  }
}

Testing with MCP Inspector

You can test the server using the official MCP Inspector:

# Test STDIO transport
npx @modelcontextprotocol/inspector python -m dataproc_mcp_server

# Test HTTP transport
DATAPROC_MCP_TRANSPORT=http python -m dataproc_mcp_server &
npx @modelcontextprotocol/inspector --transport http --server-url http://127.0.0.1:8000/mcp

# Test SSE transport  
DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server &
npx @modelcontextprotocol/inspector --transport sse --server-url http://127.0.0.1:8000/sse

The MCP Inspector provides a web interface to:

  • Browse available tools and resources
  • Test tool calls with custom parameters
  • View real-time protocol messages
  • Debug server responses

Example Tool Usage

Create a Cluster

{
  "name": "create_cluster",
  "arguments": {
    "project_id": "my-project",
    "region": "us-central1",
    "cluster_name": "my-cluster",
    "num_instances": 3,
    "machine_type": "n1-standard-4",
    "disk_size_gb": 100,
    "image_version": "2.1-debian11"
  }
}

Submit a PySpark Job

{
  "name": "submit_job",
  "arguments": {
    "project_id": "my-project",
    "region": "us-central1", 
    "cluster_name": "my-cluster",
    "job_type": "pyspark",
    "main_file": "gs://my-bucket/my-script.py",
    "args": ["--input", "gs://my-bucket/input", "--output", "gs://my-bucket/output"],
    "properties": {
      "spark.executor.memory": "4g",
      "spark.executor.instances": "3"
    }
  }
}

Create a Batch Job

{
  "name": "create_batch_job",
  "arguments": {
    "project_id": "my-project",
    "region": "us-central1",
    "batch_id": "my-batch-job",
    "job_type": "pyspark",
    "main_file": "gs://my-bucket/batch-script.py",
    "service_account": "my-service-account@my-project.iam.gserviceaccount.com"
  }
}

Development

Setup Development Environment

# Install development dependencies
uv pip install --system -e ".[dev]"

# Or with pip
pip install -e ".[dev]"

Running Tests

# Run all tests
pytest

# Run with coverage
python -m pytest --cov=src/dataproc_mcp_server tests/

# Run specific test file
pytest tests/test_dataproc_client.py -v

Code Quality

# Format code
ruff format src/ tests/

# Lint code
ruff check src/ tests/

# Type checking (with VS Code + Pylance or mypy)
mypy src/

Project Structure

dataproc-mcp/
├── src/dataproc_mcp_server/
│   ├── __init__.py
│   ├── __main__.py           # Entry point
│   ├── server.py             # MCP server implementation
│   ├── dataproc_client.py    # Dataproc cluster/job operations
│   └── batch_client.py       # Dataproc batch operations
├── tests/
│   ├── __init__.py
│   ├── test_server.py
│   └── test_dataproc_client.py
├── examples/
│   ├── mcp_server_config.json
│   └── example_usage.py
├── pyproject.toml
├── CLAUDE.md                 # Development guide
└── README.md

Troubleshooting

Common Issues

  1. Authentication Errors:

    • Verify GOOGLE_APPLICATION_CREDENTIALS is set correctly
    • Ensure service account has required permissions
    • Check that Dataproc API is enabled
  2. Network Errors:

    • Verify VPC/subnet configurations for custom networks
    • Check firewall rules for cluster communication
    • Ensure clusters are in the correct region
  3. Job Submission Failures:

    • Verify file paths in Cloud Storage are accessible
    • Check cluster has sufficient resources
    • Validate job configuration parameters

Debug Mode

Enable debug logging:

export PYTHONPATH=/path/to/dataproc-mcp/src
python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from dataproc_mcp_server import __main__
import asyncio
asyncio.run(__main__.main())
"

API Reference

Tools

Cluster Management

  • list_clusters(project_id, region) - List all clusters
  • create_cluster(project_id, region, cluster_name, ...) - Create cluster
  • delete_cluster(project_id, region, cluster_name) - Delete cluster
  • get_cluster(project_id, region, cluster_name) - Get cluster details

Job Management

  • submit_job(project_id, region, cluster_name, job_type, main_file, ...) - Submit job
  • list_jobs(project_id, region, cluster_name?, job_states?) - List jobs
  • get_job(project_id, region, job_id) - Get job details
  • cancel_job(project_id, region, job_id) - Cancel job

Batch Operations

  • create_batch_job(project_id, region, batch_id, job_type, main_file, ...) - Create batch job
  • list_batch_jobs(project_id, region, page_size?) - List batch jobs
  • get_batch_job(project_id, region, batch_id) - Get batch job details
  • delete_batch_job(project_id, region, batch_id) - Delete batch job

Resources

  • dataproc://clusters - Access cluster information
  • dataproc://jobs - Access job information

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Run the test suite and linting
  6. Submit a pull request

License

MIT License - see LICENSE file for details.

Support

For issues and questions:

  1. Check the troubleshooting section
  2. Review Google Cloud Dataproc documentation
  3. Open an issue in the repository

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured