
Dataproc MCP Server
Enables AI assistants to manage Google Cloud Dataproc clusters and jobs through a standardized interface. Supports cluster creation/deletion, job submission (Spark, PySpark, Hive, etc.), and serverless batch operations.
README
Dataproc MCP Server
A Model Context Protocol (MCP) server that provides tools for managing Google Cloud Dataproc clusters and jobs. This server enables AI assistants to interact with Dataproc resources through a standardized interface.
Features
Cluster Management
- List Clusters: View all clusters in a project and region
- Create Cluster: Provision new Dataproc clusters with custom configurations
- Delete Cluster: Remove existing clusters
- Get Cluster: Retrieve detailed information about specific clusters
Job Management
- Submit Jobs: Run Spark, PySpark, Spark SQL, Hive, Pig, and Hadoop jobs
- List Jobs: View jobs across clusters with filtering options
- Get Job: Retrieve detailed job information and status
- Cancel Job: Stop running jobs
Batch Operations
- Create Batch Jobs: Submit serverless Dataproc batch jobs
- List Batch Jobs: View all batch jobs in a region
- Get Batch Job: Retrieve detailed batch job information
- Delete Batch Job: Remove batch jobs
Installation
Prerequisites
- Python 3.11 or higher
- Google Cloud SDK configured with appropriate permissions
- Dataproc API enabled in your Google Cloud project
Install from Source
# Clone the repository
git clone <repository-url>
cd dataproc-mcp
# Install with uv (recommended)
uv pip install --system -e .
# Or install with pip
pip install -e .
# Install development dependencies
uv pip install --system -e ".[dev]"
Configuration
Authentication
The server supports multiple authentication methods:
-
Service Account Key (Recommended for production):
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
-
Application Default Credentials:
gcloud auth application-default login
-
Compute Engine Service Account (when running on GCE)
Required Permissions
Ensure your service account or user has the following IAM roles:
roles/dataproc.editor
- For cluster and job managementroles/storage.objectViewer
- For accessing job files in Cloud Storageroles/compute.networkUser
- For VPC network access (if using custom networks)
Usage
Running the Server
The server supports multiple transport protocols:
# STDIO (default) - for command-line tools and MCP clients
python -m dataproc_mcp_server
# HTTP - REST API over HTTP using streamable-http transport
DATAPROC_MCP_TRANSPORT=http python -m dataproc_mcp_server
# SSE - Server-Sent Events for real-time communication
DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server
# Run with entry point script (STDIO only)
dataproc-mcp-server
Transport Configuration
- STDIO (default): Standard input/output communication for command-line tools and MCP clients
- HTTP: REST API over HTTP using streamable-http transport
- Server URL:
http://localhost:8000/mcp
- Accessible via web clients and HTTP-based MCP clients
- Server URL:
- SSE: Server-Sent Events for real-time bidirectional communication
- Server URL:
http://localhost:8000/sse
- Supports streaming responses and live updates
- Server URL:
Environment Variables
# Transport type (stdio, http, sse)
export DATAPROC_MCP_TRANSPORT=http
# Server host (for HTTP/SSE transports)
export DATAPROC_MCP_HOST=0.0.0.0
# Server port (for HTTP/SSE transports)
export DATAPROC_MCP_PORT=8080
# Authentication
export GOOGLE_APPLICATION_CREDENTIALS="/path/to/service-account.json"
MCP Client Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"dataproc": {
"command": "python",
"args": ["-m", "dataproc_mcp_server"],
"env": {
"GOOGLE_APPLICATION_CREDENTIALS": "/path/to/service-account.json"
}
}
}
}
Testing with MCP Inspector
You can test the server using the official MCP Inspector:
# Test STDIO transport
npx @modelcontextprotocol/inspector python -m dataproc_mcp_server
# Test HTTP transport
DATAPROC_MCP_TRANSPORT=http python -m dataproc_mcp_server &
npx @modelcontextprotocol/inspector --transport http --server-url http://127.0.0.1:8000/mcp
# Test SSE transport
DATAPROC_MCP_TRANSPORT=sse python -m dataproc_mcp_server &
npx @modelcontextprotocol/inspector --transport sse --server-url http://127.0.0.1:8000/sse
The MCP Inspector provides a web interface to:
- Browse available tools and resources
- Test tool calls with custom parameters
- View real-time protocol messages
- Debug server responses
Example Tool Usage
Create a Cluster
{
"name": "create_cluster",
"arguments": {
"project_id": "my-project",
"region": "us-central1",
"cluster_name": "my-cluster",
"num_instances": 3,
"machine_type": "n1-standard-4",
"disk_size_gb": 100,
"image_version": "2.1-debian11"
}
}
Submit a PySpark Job
{
"name": "submit_job",
"arguments": {
"project_id": "my-project",
"region": "us-central1",
"cluster_name": "my-cluster",
"job_type": "pyspark",
"main_file": "gs://my-bucket/my-script.py",
"args": ["--input", "gs://my-bucket/input", "--output", "gs://my-bucket/output"],
"properties": {
"spark.executor.memory": "4g",
"spark.executor.instances": "3"
}
}
}
Create a Batch Job
{
"name": "create_batch_job",
"arguments": {
"project_id": "my-project",
"region": "us-central1",
"batch_id": "my-batch-job",
"job_type": "pyspark",
"main_file": "gs://my-bucket/batch-script.py",
"service_account": "my-service-account@my-project.iam.gserviceaccount.com"
}
}
Development
Setup Development Environment
# Install development dependencies
uv pip install --system -e ".[dev]"
# Or with pip
pip install -e ".[dev]"
Running Tests
# Run all tests
pytest
# Run with coverage
python -m pytest --cov=src/dataproc_mcp_server tests/
# Run specific test file
pytest tests/test_dataproc_client.py -v
Code Quality
# Format code
ruff format src/ tests/
# Lint code
ruff check src/ tests/
# Type checking (with VS Code + Pylance or mypy)
mypy src/
Project Structure
dataproc-mcp/
├── src/dataproc_mcp_server/
│ ├── __init__.py
│ ├── __main__.py # Entry point
│ ├── server.py # MCP server implementation
│ ├── dataproc_client.py # Dataproc cluster/job operations
│ └── batch_client.py # Dataproc batch operations
├── tests/
│ ├── __init__.py
│ ├── test_server.py
│ └── test_dataproc_client.py
├── examples/
│ ├── mcp_server_config.json
│ └── example_usage.py
├── pyproject.toml
├── CLAUDE.md # Development guide
└── README.md
Troubleshooting
Common Issues
-
Authentication Errors:
- Verify
GOOGLE_APPLICATION_CREDENTIALS
is set correctly - Ensure service account has required permissions
- Check that Dataproc API is enabled
- Verify
-
Network Errors:
- Verify VPC/subnet configurations for custom networks
- Check firewall rules for cluster communication
- Ensure clusters are in the correct region
-
Job Submission Failures:
- Verify file paths in Cloud Storage are accessible
- Check cluster has sufficient resources
- Validate job configuration parameters
Debug Mode
Enable debug logging:
export PYTHONPATH=/path/to/dataproc-mcp/src
python -c "
import logging
logging.basicConfig(level=logging.DEBUG)
from dataproc_mcp_server import __main__
import asyncio
asyncio.run(__main__.main())
"
API Reference
Tools
Cluster Management
list_clusters(project_id, region)
- List all clusterscreate_cluster(project_id, region, cluster_name, ...)
- Create clusterdelete_cluster(project_id, region, cluster_name)
- Delete clusterget_cluster(project_id, region, cluster_name)
- Get cluster details
Job Management
submit_job(project_id, region, cluster_name, job_type, main_file, ...)
- Submit joblist_jobs(project_id, region, cluster_name?, job_states?)
- List jobsget_job(project_id, region, job_id)
- Get job detailscancel_job(project_id, region, job_id)
- Cancel job
Batch Operations
create_batch_job(project_id, region, batch_id, job_type, main_file, ...)
- Create batch joblist_batch_jobs(project_id, region, page_size?)
- List batch jobsget_batch_job(project_id, region, batch_id)
- Get batch job detailsdelete_batch_job(project_id, region, batch_id)
- Delete batch job
Resources
dataproc://clusters
- Access cluster informationdataproc://jobs
- Access job information
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Run the test suite and linting
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues and questions:
- Check the troubleshooting section
- Review Google Cloud Dataproc documentation
- Open an issue in the repository
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.