DataPilot MCP Server

DataPilot MCP Server

A Model Context Protocol server that enables natural language interaction with Snowflake databases through AI guidance, supporting core database operations, warehouse management, and AI-powered data analysis features.

Category
Visit Server

README

DataPilot MCP Server

CI/CD Pipeline Coverage Status Python Version License: MIT Code style: black Security: bandit Pre-commit

Navigate your data with AI guidance. A comprehensive Model Context Protocol (MCP) server for interacting with Snowflake using natural language and AI. Built with FastMCP 2.0 and OpenAI integration.

Features

🗄️ Core Database Operations

  • execute_sql - Execute SQL queries with results
  • list_databases - List all accessible databases
  • list_schemas - List schemas in a database
  • list_tables - List tables in a database/schema
  • describe_table - Get detailed table column information
  • get_table_sample - Retrieve sample data from tables

🏭 Warehouse Management

  • list_warehouses - List all available warehouses
  • get_warehouse_status - Get current warehouse, database, and schema status

🤖 AI-Powered Features

  • natural_language_to_sql - Convert natural language questions to SQL queries
  • analyze_query_results - AI-powered analysis of query results
  • suggest_query_optimizations - Get optimization suggestions for SQL queries
  • explain_query - Plain English explanations of SQL queries
  • generate_table_insights - AI-generated insights about table data

📊 Resources (Data Access)

  • snowflake://databases - Access database list
  • snowflake://schemas/{database} - Access schema list
  • snowflake://tables/{database}/{schema} - Access table list
  • snowflake://table/{database}/{schema}/{table} - Access table details

📝 Prompts (Templates)

  • sql_analysis_prompt - Templates for SQL analysis
  • data_exploration_prompt - Templates for data exploration
  • sql_optimization_prompt - Templates for query optimization

Installation

  1. Clone and setup the project:

    git clone <repository-url>
    cd datapilot
    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    
  2. Install dependencies:

    pip install -r requirements.txt
    
  3. Configure environment variables:

    cp env.template .env
    # Edit .env with your credentials
    

Configuration

Environment Variables

Create a .env file with the following configuration:

# Required: Snowflake Connection
# Account examples:
# - ACCOUNT-LOCATOR.snowflakecomputing.com (recommended)
# - ACCOUNT-LOCATOR.region.cloud
# - organization-account_name
SNOWFLAKE_ACCOUNT=ACCOUNT-LOCATOR.snowflakecomputing.com
SNOWFLAKE_USER=your_username
SNOWFLAKE_PASSWORD=your_password

# Optional: Default Snowflake Context
SNOWFLAKE_WAREHOUSE=your_warehouse_name
SNOWFLAKE_DATABASE=your_database_name
SNOWFLAKE_SCHEMA=your_schema_name
SNOWFLAKE_ROLE=your_role_name

# Required: OpenAI API
OPENAI_API_KEY=your_openai_api_key
OPENAI_MODEL=gpt-4  # Optional, defaults to gpt-4

Snowflake Account Setup

  1. Get your Snowflake account identifier - Multiple formats supported:

    • Recommended: ACCOUNT-LOCATOR.snowflakecomputing.com (e.g., SCGEENJ-UR66679.snowflakecomputing.com)
    • Regional: ACCOUNT-LOCATOR.region.cloud (e.g., xy12345.us-east-1.aws)
    • Legacy: organization-account_name
  2. Ensure your user has appropriate permissions:

    • USAGE on warehouses, databases, and schemas
    • SELECT on tables for querying
    • SHOW privileges for listing objects

Usage

Running the Server

Method 1: Direct execution

python -m src.main

Method 2: Using FastMCP CLI

fastmcp run src/main.py

Method 3: Development mode with auto-reload

fastmcp dev src/main.py

Connecting to MCP Clients

Claude Desktop

Add to your Claude Desktop configuration:

{
  "mcpServers": {
    "datapilot": {
      "command": "python",
      "args": ["-m", "src.main"],
      "cwd": "/path/to/datapilot",
      "env": {
        "SNOWFLAKE_ACCOUNT": "your_account",
        "SNOWFLAKE_USER": "your_user",
        "SNOWFLAKE_PASSWORD": "your_password",
        "OPENAI_API_KEY": "your_openai_key"
      }
    }
  }
}

Using FastMCP Client

from fastmcp import Client

async def main():
    async with Client("python -m src.main") as client:
        # List databases
        databases = await client.call_tool("list_databases")
        print("Databases:", databases)
        
        # Natural language to SQL
        result = await client.call_tool("natural_language_to_sql", {
            "question": "Show me the top 10 customers by revenue",
            "database": "SALES_DB",
            "schema": "PUBLIC"
        })
        print("Generated SQL:", result)

Example Usage

1. Natural Language Query

# Ask a question in natural language
question = "What are the top 5 products by sales volume last month?"
sql = await client.call_tool("natural_language_to_sql", {
    "question": question,
    "database": "SALES_DB",
    "schema": "PUBLIC"
})
print(f"Generated SQL: {sql}")

2. Execute and Analyze

# Execute a query and get AI analysis
analysis = await client.call_tool("analyze_query_results", {
    "query": "SELECT product_name, SUM(quantity) as total_sales FROM sales GROUP BY product_name ORDER BY total_sales DESC LIMIT 10",
    "results_limit": 100,
    "analysis_type": "summary"
})
print(f"Analysis: {analysis}")

3. Table Insights

# Get AI-powered insights about a table
insights = await client.call_tool("generate_table_insights", {
    "table_name": "SALES_DB.PUBLIC.CUSTOMERS",
    "sample_limit": 50
})
print(f"Table insights: {insights}")

4. Query Optimization

# Get optimization suggestions
optimizations = await client.call_tool("suggest_query_optimizations", {
    "query": "SELECT * FROM large_table WHERE date_column > '2023-01-01'"
})
print(f"Optimization suggestions: {optimizations}")

Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   MCP Client    │    │   FastMCP       │    │   Snowflake     │
│   (Claude/etc)  │◄──►│   Server        │◄──►│   Database      │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                │
                                ▼
                       ┌─────────────────┐
                       │   OpenAI API    │
                       │   (GPT-4)       │
                       └─────────────────┘

Project Structure

datapilot/
├── src/
│   ├── __init__.py
│   ├── main.py              # Main FastMCP server
│   ├── models.py            # Pydantic data models
│   ├── snowflake_client.py  # Snowflake connection & operations
│   └── openai_client.py     # OpenAI integration
├── requirements.txt         # Python dependencies
├── env.template            # Environment variables template
└── README.md              # This file

Development

Adding New Tools

  1. Define your tool function in src/main.py:
@mcp.tool()
async def my_new_tool(param: str, ctx: Context) -> str:
    """Description of what the tool does"""
    await ctx.info(f"Processing: {param}")
    # Your logic here
    return "result"
  1. Add appropriate error handling and logging
  2. Test with FastMCP dev mode: fastmcp dev src/main.py

Adding New Resources

@mcp.resource("snowflake://my-resource/{param}")
async def my_resource(param: str) -> Dict[str, Any]:
    """Resource description"""
    # Your logic here
    return {"data": "value"}

Troubleshooting

Common Issues

  1. Connection Errors

    • Verify Snowflake credentials in .env
    • Check network connectivity
    • Ensure user has required permissions
  2. OpenAI Errors

    • Verify OPENAI_API_KEY is set correctly
    • Check API quota and billing
    • Ensure model name is correct
  3. Import Errors

    • Activate virtual environment
    • Install all requirements: pip install -r requirements.txt
    • Run from project root directory

Logging

Enable debug logging:

LOG_LEVEL=DEBUG

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

This project is licensed under the MIT License.

Support

For issues and questions:

  • Check the troubleshooting section
  • Review FastMCP documentation: https://gofastmcp.com/
  • Open an issue in the repository

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured