DataForSEO MCP Server

DataForSEO MCP Server

A Model Context Protocol server that enables Claude to interact with DataForSEO APIs, allowing access to SEO data including SERPs, keyword research, on-page metrics, and domain analytics.

Category
Visit Server

README

DataForSEO MCP Server

Model Context Protocol (MCP) server implementation for DataForSEO, enabling Claude to interact with selected DataForSEO APIs and obtain SEO data through a standardized interface.

Features

  • SERP API: real-time Search Engine Results Page (SERP) data for Google, Bing, and Yahoo;
  • KEYWORDS_DATA API: keyword research and clickstream data, including search volume, cost-per-click, and other metrics;
  • ONPAGE API: allows crawling websites and webpages according to customizable parameters to obtain on-page SEO performance metrics;
  • DATAFORSEO_LABS API: data on keywords, SERPs, and domains based on DataForSEO's in-house databases and proprietary algorithms.

Prerequisites

  • Node.js (v14 or higher)
  • DataForSEO API credentials (API login and password)

Installation

  1. Clone the repository:
git clone https://github.com/dataforseo/mcp-server-typescript
cd mcp-server-typescript
  1. Install dependencies:
npm install
  1. Set up environment variables:
# Required
export DATAFORSEO_USERNAME=your_username
export DATAFORSEO_PASSWORD=your_password

# Optional: specify which modules to enable (comma-separated)
# If not set, all modules will be enabled
export ENABLED_MODULES="SERP,KEYWORDS_DATA,ONPAGE,DATAFORSEO_LABS"

Building and Running

Build the project:

npm run build

Run the server:

node build/index.js

Available Modules

The following modules are available to be enabled/disabled:

  • SERP: real-time SERP data for Google, Bing, and Yahoo;
  • KEYWORDS_DATA: keyword research and clickstream data;
  • ONPAGE: crawl websites and webpages to obtain on-page SEO performance metrics;
  • DATAFORSEO_LABS: data on keywords, SERPs, and domains based on DataForSEO's databases and algorithms.

Adding New Tools/Modules

Module Structure

Each module corresponds to a specific DataForSEO API:

Implementation Options

You can either:

  1. Add a new tool to an existing module
  2. Create a completely new module

Adding a New Tool

Here's how to add a new tool to any new or pre-existing module:

// src/modules/your-module/tools/your-tool.tool.ts
import { BaseTool } from '../../base.tool';
import { DataForSEOClient } from '../../../client/dataforseo.client';
import { z } from 'zod';

export class YourTool extends BaseTool {
  constructor(private client: DataForSEOClient) {
    super(client);
    // DataForSEO API returns extensive data with many fields, which can be overwhelming
    // for AI agents to process. We select only the most relevant fields to ensure
    // efficient and focused responses.
    this.fields = [
      'title',           // Example: Include the title field
      'description',     // Example: Include the description field
      'url',            // Example: Include the URL field
      // Add more fields as needed
    ];
  }

  getName() {
    return 'your-tool-name';
  }

  getDescription() {
    return 'Description of what your tool does';
  }

  getParams(): z.ZodRawShape {
    return {
      // Required parameters
      keyword: z.string().describe('The keyword to search for'),
      location: z.string().describe('Location in format "City,Region,Country" or just "Country"'),
      
      // Optional parameters
      fields: z.array(z.string()).optional().describe('Specific fields to return in the response. If not specified, all fields will be returned'),
      language: z.string().optional().describe('Language code (e.g., "en")'),
    };
  }

  async handle(params: any) {
    try {
      // Make the API call
      const response = await this.client.makeRequest({
        endpoint: '/v3/dataforseo_endpoint_path',
        method: 'POST',
        body: [{
          // Your request parameters
          keyword: params.keyword,
          location: params.location,
          language: params.language,
        }],
      });

      // Validate the response for errors
      this.validateResponse(response);

      //if the main data array is specified in tasks[0].result[:] field
      const result = this.handleDirectResult(response);
      //if main data array specified in tasks[0].result[0].items field
      const result = this.handleItemsResult(response);
      // Format and return the response
      return this.formatResponse(result);
    } catch (error) {
      // Handle and format any errors
      return this.formatErrorResponse(error);
    }
  }
}

Creating a New Module

  1. Create a new directory under src/modules/ for your module:
mkdir -p src/modules/your-module-name
  1. Create module files:
// src/modules/your-module-name/your-module-name.module.ts
import { BaseModule } from '../base.module';
import { DataForSEOClient } from '../../client/dataforseo.client';
import { YourTool } from './tools/your-tool.tool';

export class YourModuleNameModule extends BaseModule {
  constructor(private client: DataForSEOClient) {
    super();
  }

  getTools() {
    return {
      'your-tool-name': new YourTool(this.client),
    };
  }
}
  1. Register your module in src/config/modules.config.ts:
export const AVAILABLE_MODULES = [
  'SERP',
  'KEYWORDS_DATA',
  'ONPAGE',
  'DATAFORSEO_LABS',
  'YOUR_MODULE_NAME'  // Add your module name here
] as const;
  1. Initialize your module in src/index.ts:
if (isModuleEnabled('YOUR_MODULE_NAME', enabledModules)) {
  modules.push(new YourModuleNameModule(dataForSEOClient));
}

What endpoints/APIs do you want us to support next?

We're always looking to expand the capabilities of this MCP server. If you have specific DataForSEO endpoints or APIs you'd like to see supported, please:

  1. Check the DataForSEO API Documentation to see what's available
  2. Open an issue in our GitHub repository with:
    • The API/endpoint you'd like to see supported;
    • A brief description of your use case;
    • Describe any specific features you'd like to see implemented.

Your feedback helps us prioritize which APIs to support next!

Resources

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured