Datadog MCP Server

Datadog MCP Server

Enables comprehensive Datadog monitoring capabilities including CI/CD pipeline management, service logs analysis, metrics querying, monitor and SLO management, service definitions retrieval, and team management through Claude and other MCP clients.

Category
Visit Server

README

Datadog MCP Server

CircleCI Python 3.13+ UV Podman GitHub release

A Model Context Protocol (MCP) server that provides comprehensive Datadog monitoring capabilities through Claude Desktop and other MCP clients.

Features

This MCP server enables Claude to:

  • CI/CD Pipeline Management: List CI pipelines, extract fingerprints
  • Service Logs Analysis: Retrieve and analyze service logs with environment and time filtering
  • Metrics Monitoring: Query any Datadog metric with flexible filtering, aggregation, and field discovery
  • Monitoring & Alerting: List and manage Datadog monitors and Service Level Objectives (SLOs)
  • Service Definitions: List and retrieve detailed service definitions with metadata, ownership, and configuration
  • Team Management: List teams, view member details, and manage team information

Quick Start

Choose your preferred method to run the Datadog MCP server:

๐Ÿš€ UVX Direct Run (Recommended)

export DD_API_KEY="your-datadog-api-key" DD_APP_KEY="your-datadog-application-key"

# Latest version (HEAD)
uvx --from git+https://github.com/shelfio/datadog-mcp.git datadog-mcp

# Specific version (recommended for production)
uvx --from git+https://github.com/shelfio/datadog-mcp.git@v0.0.5 datadog-mcp

# Specific branch
uvx --from git+https://github.com/shelfio/datadog-mcp.git@main datadog-mcp

๐Ÿ”ง UV Quick Run (Development)

export DD_API_KEY="your-datadog-api-key" DD_APP_KEY="your-datadog-application-key"
git clone https://github.com/shelfio/datadog-mcp.git /tmp/datadog-mcp && cd /tmp/datadog-mcp && uv run ddmcp/server.py

๐Ÿณ Podman (Optional)

podman run -e DD_API_KEY="your-datadog-api-key" -e DD_APP_KEY="your-datadog-application-key" -i $(podman build -q https://github.com/shelfio/datadog-mcp.git)

Method Comparison:

Method Speed Latest Code Setup Best For
๐Ÿš€ UVX Direct Run โšกโšกโšก โœ… (versioned) Minimal Production, Claude Desktop
๐Ÿ”ง UV Quick Run โšกโšก โœ… (bleeding edge) Clone Required Development, Testing
๐Ÿณ Podman โšก โœ… (bleeding edge) Podman Required Containerized Environments

Requirements

For UVX/UV Methods

  • Python 3.13+
  • UV package manager (includes uvx)
  • Datadog API Key and Application Key

For Podman Method

  • Podman
  • Datadog API Key and Application Key

Version Management

When using UVX, you can specify exact versions for reproducible deployments:

Version Formats

  • Latest: git+https://github.com/shelfio/datadog-mcp.git (HEAD)
  • Specific Tag: git+https://github.com/shelfio/datadog-mcp.git@v0.0.5
  • Branch: git+https://github.com/shelfio/datadog-mcp.git@main
  • Commit Hash: git+https://github.com/shelfio/datadog-mcp.git@59f0c15

Recommendations

  • Production: Use specific tags (e.g., @v0.0.5) for stability
  • Development: Use latest or specific branch for newest features
  • Testing: Use commit hashes for exact reproducibility

See GitHub releases for all available versions.

Claude Desktop Integration

Using UVX (Recommended)

Add to Claude Desktop configuration:

Latest version (bleeding edge):

{
  "mcpServers": {
    "datadog": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/shelfio/datadog-mcp.git", "datadog-mcp"],
      "env": {
        "DD_API_KEY": "your-datadog-api-key",
        "DD_APP_KEY": "your-datadog-application-key"
      }
    }
  }
}

Specific version (recommended for production):

{
  "mcpServers": {
    "datadog": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/shelfio/datadog-mcp.git@v0.0.5", "datadog-mcp"],
      "env": {
        "DD_API_KEY": "your-datadog-api-key",
        "DD_APP_KEY": "your-datadog-application-key"
      }
    }
  }
}

For EU region (see Multi-Region Support for other regions):

{
  "mcpServers": {
    "datadog": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/shelfio/datadog-mcp.git", "datadog-mcp"],
      "env": {
        "DD_API_KEY": "your-datadog-api-key",
        "DD_APP_KEY": "your-datadog-application-key",
        "DD_SITE": "datadoghq.eu"
      }
    }
  }
}

Using Local Development Setup

For development with local cloned repository:

git clone https://github.com/shelfio/datadog-mcp.git
cd datadog-mcp

Add to Claude Desktop configuration:

{
  "mcpServers": {
    "datadog": {
      "command": "uv",
      "args": ["run", "ddmcp/server.py"],
      "cwd": "/path/to/datadog-mcp",
      "env": {
        "DD_API_KEY": "your-datadog-api-key",
        "DD_APP_KEY": "your-datadog-application-key"
      }
    }
  }
}

Installation Options

UVX Installation (Recommended)

Install and run directly from GitHub without cloning:

export DD_API_KEY="your-datadog-api-key"
export DD_APP_KEY="your-datadog-application-key"

# Latest version
uvx --from git+https://github.com/shelfio/datadog-mcp.git datadog-mcp

# Specific version (recommended for production)
uvx --from git+https://github.com/shelfio/datadog-mcp.git@v0.0.5 datadog-mcp

Development Installation

For local development and testing:

  1. Clone the repository:

    git clone https://github.com/shelfio/datadog-mcp.git
    cd datadog-mcp
    
  2. Install dependencies:

    uv sync
    
  3. Run the server:

    export DD_API_KEY="your-datadog-api-key"
    export DD_APP_KEY="your-datadog-application-key"
    uv run ddmcp/server.py
    

Podman Installation (Optional)

For containerized environments:

podman run -e DD_API_KEY="your-key" -e DD_APP_KEY="your-app-key" -i $(podman build -q https://github.com/shelfio/datadog-mcp.git)

Tools

The server provides these tools to Claude:

list_ci_pipelines

Lists all CI pipelines registered in Datadog with filtering options.

Arguments:

  • repository (optional): Filter by repository name
  • pipeline_name (optional): Filter by pipeline name
  • format (optional): Output format - "table", "json", or "summary"

get_pipeline_fingerprints

Extracts pipeline fingerprints for use in Terraform service definitions.

Arguments:

  • repository (optional): Filter by repository name
  • pipeline_name (optional): Filter by pipeline name
  • format (optional): Output format - "table", "json", or "summary"

list_metrics

Lists all available metrics from Datadog for metric discovery.

Arguments:

  • filter (optional): Filter to search for metrics by tags (e.g., 'aws:', 'env:', 'service:web')
  • limit (optional): Maximum number of metrics to return (default: 100, max: 10000)

get_metrics

Queries any Datadog metric with flexible filtering and aggregation.

Arguments:

  • metric_name (required): The metric name to query (e.g., 'aws.apigateway.count', 'system.cpu.user')
  • time_range (optional): "1h", "4h", "8h", "1d", "7d", "14d", "30d"
  • aggregation (optional): "avg", "sum", "min", "max", "count"
  • filters (optional): Dictionary of filters to apply (e.g., {'service': 'web', 'env': 'prod'})
  • aggregation_by (optional): List of fields to group results by
  • format (optional): "table", "summary", "json", "timeseries"

get_metric_fields

Retrieves all available fields (tags) for a specific metric.

Arguments:

  • metric_name (required): The metric name to get fields for
  • time_range (optional): "1h", "4h", "8h", "1d", "7d", "14d", "30d"

get_metric_field_values

Retrieves all values for a specific field of a metric.

Arguments:

  • metric_name (required): The metric name
  • field_name (required): The field name to get values for
  • time_range (optional): "1h", "4h", "8h", "1d", "7d", "14d", "30d"

list_service_definitions

Lists all service definitions from Datadog with pagination and filtering.

Arguments:

  • page_size (optional): Number of service definitions per page (default: 10, max: 100)
  • page_number (optional): Page number for pagination (0-indexed, default: 0)
  • schema_version (optional): Filter by schema version (e.g., 'v2', 'v2.1', 'v2.2')
  • format (optional): Output format - "table", "json", or "summary"

get_service_definition

Retrieves the definition of a specific service with detailed metadata.

Arguments:

  • service_name (required): Name of the service to retrieve
  • schema_version (optional): Schema version to retrieve (default: "v2.2", options: "v1", "v2", "v2.1", "v2.2")
  • format (optional): Output format - "formatted", "json", or "yaml"

get_service_logs

Retrieves service logs with comprehensive filtering capabilities.

Arguments:

  • service_name (required): Name of the service
  • time_range (required): "1h", "4h", "8h", "1d", "7d", "14d", "30d"
  • environment (optional): "prod", "staging", "backoffice"
  • log_level (optional): "INFO", "ERROR", "WARN", "DEBUG"
  • format (optional): "table", "text", "json", "summary"

list_monitors

Lists all Datadog monitors with comprehensive filtering options.

Arguments:

  • name (optional): Filter monitors by name (substring match)
  • tags (optional): Filter monitors by tags (e.g., 'env:prod,service:web')
  • monitor_tags (optional): Filter monitors by monitor tags (e.g., 'team:backend')
  • page_size (optional): Number of monitors per page (default: 50, max: 1000)
  • page (optional): Page number (0-indexed, default: 0)
  • format (optional): Output format - "table", "json", or "summary"

list_slos

Lists Service Level Objectives (SLOs) from Datadog with filtering capabilities.

Arguments:

  • query (optional): Filter SLOs by name or description (substring match)
  • tags (optional): Filter SLOs by tags (e.g., 'team:backend,env:prod')
  • limit (optional): Maximum number of SLOs to return (default: 50, max: 1000)
  • offset (optional): Number of SLOs to skip (default: 0)
  • format (optional): Output format - "table", "json", or "summary"

get_teams

Lists teams and their members.

Arguments:

  • team_name (optional): Filter by team name
  • include_members (optional): Include member details (default: false)
  • format (optional): "table", "json", "summary"

Examples

Ask Claude to help you with:

"Show me all CI pipelines for the shelf-api repository"

"Get error logs for the content service in the last 4 hours"

"List all available AWS metrics"

"What are the latest metrics for aws.apigateway.count grouped by account?"

"Get all available fields for the system.cpu.user metric"

"List all service definitions in my organization"

"Get the definition for the user-api service"

"List all teams and their members"

"Show all monitors for the web service"

"List SLOs with less than 99% uptime"

"Extract pipeline fingerprints for Terraform configuration"

Configuration

Environment Variables

Variable Description Required Default
DD_API_KEY Datadog API Key Yes -
DD_APP_KEY Datadog Application Key Yes -
DD_SITE Datadog site/region (see table below) No datadoghq.com

Multi-Region Support

Datadog operates in multiple regions. Set the DD_SITE environment variable to connect to your Datadog region:

Region DD_SITE Value Description
US1 datadoghq.com US (default)
US3 us3.datadoghq.com US3
US5 us5.datadoghq.com US5
EU1 datadoghq.eu Europe
AP1 ap1.datadoghq.com Asia Pacific (Japan)
US1-FED ddog-gov.com US Government

Example for EU region:

export DD_SITE="datadoghq.eu"
export DD_API_KEY="your-api-key"
export DD_APP_KEY="your-app-key"
uvx --from git+https://github.com/shelfio/datadog-mcp.git datadog-mcp

See Datadog's Getting Started with Sites for more information.

Obtaining Datadog Credentials

  1. Log in to your Datadog account
  2. Go to Organization Settings โ†’ API Keys
  3. Create or copy your API Key (this is your DD_API_KEY)
  4. Go to Organization Settings โ†’ Application Keys
  5. Create or copy your Application Key (this is your DD_APP_KEY)

Note: These are two different keys:

  • API Key: Used for authentication with Datadog's API
  • Application Key: Used for authorization and is tied to a specific user account

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured