
Datadog MCP Server
Enables interaction with Datadog's monitoring platform to search logs, search trace spans, and perform trace span aggregation for analysis.
Tools
search_spans
Datadogのトレースspanを検索するツール
aggregate_spans
Datadogのトレースspanを集計するツール
search_logs
Datadogのログを検索するツール
README
Datadog MCP Server
MCP Server for Datadog API, enabling log search, trace span search, and trace span aggregation functionalities.
<a href="https://glama.ai/mcp/servers/@Nozomuts/datadog-mcp"> <img width="380" height="200" src="https://glama.ai/mcp/servers/@Nozomuts/datadog-mcp/badge" alt="Datadog Server MCP server" /> </a>
Features
- Log Search: Search and retrieve logs from Datadog with flexible query options
- Trace Span Search: Search for distributed trace spans with various filtering options
- Trace Span Aggregation: Aggregate trace spans by different dimensions for analysis
Tools
-
search_logs
- Search for logs in Datadog
- Inputs:
filterQuery
(optional string): Query string to search logs (default: "*")filterFrom
(optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)filterTo
(optional number): Search end time as UNIX timestamp in seconds (default: current time)pageLimit
(optional number): Maximum number of logs to retrieve (default: 25, max: 1000)pageCursor
(optional string): Pagination cursor for retrieving additional results
- Returns: Formatted text containing:
- Search conditions (query and time range)
- Number of logs found
- Next page cursor (if available)
- Log details including:
- Service name
- Tags
- Timestamp
- Status
- Message (truncated to 300 characters)
- Host
- Important attributes (http.method, http.url, http.status_code, error)
-
search_spans
- Search for trace spans in Datadog
- Inputs:
filterQuery
(optional string): Query string to search spans (default: "*")filterFrom
(optional number): Search start time as UNIX timestamp in seconds (default: 15 minutes ago)filterTo
(optional number): Search end time as UNIX timestamp in seconds (default: current time)pageLimit
(optional number): Maximum number of spans to retrieve (default: 25, max: 1000)pageCursor
(optional string): Pagination cursor for retrieving additional results
- Returns: Formatted text containing:
- Search conditions (query and time range)
- Number of spans found
- Next page cursor (if available)
- Span details including:
- Service name
- Timestamp
- Resource name
- Duration (in seconds)
- Host
- Environment
- Type
- Important attributes (http.method, http.url, http.status_code, error)
-
aggregate_spans
- Aggregate trace spans in Datadog by specified dimensions
- Inputs:
filterQuery
(optional string): Query string to filter spans for aggregation (default: "*")filterFrom
(optional number): Start time as UNIX timestamp in seconds (default: 15 minutes ago)filterTo
(optional number): End time as UNIX timestamp in seconds (default: current time)groupBy
(optional string[]): Dimensions to group by (e.g., ["service", "resource_name", "status"])aggregation
(optional string): Aggregation method - "count", "avg", "sum", "min", "max", "pct" (default: "count")interval
(optional string): Time interval for time series data (only when type is "timeseries")type
(optional string): Result type, either "timeseries" or "total" (default: "timeseries")
- Returns: Formatted text containing:
- Aggregation results in buckets, each including:
- Bucket ID
- Group by values (if groupBy is specified)
- Computed values based on the aggregation method
- Additional metadata:
- Processing time (elapsed)
- Request ID
- Status
- Warnings (if any)
- Aggregation results in buckets, each including:
Setup
You need to set up Datadog API and application keys:
- Get your API key and application key from the Datadog API Keys page
- Install dependencies in the datadog-mcp project:
npm install # or pnpm install
- Build the TypeScript project:
npm run build # or pnpm run build
Docker Setup
You can build using Docker with the following command:
docker build -t datadog-mcp .
Usage with Claude Desktop
To use this with Claude Desktop, add the following to your claude_desktop_config.json
:
{
"mcpServers": {
"datadog": {
"command": "node",
"args": [
"/path/to/datadog-mcp/build/index.js"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
If you're using Docker, you can configure it like this:
{
"mcpServers": {
"datadog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"DD_API_KEY",
"-e",
"DD_APP_KEY",
"datadog-mcp"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
Usage with VS Code
For quick installation in VS Code, configure your settings:
- Open User Settings (JSON) in VS Code (
Ctrl+Shift+P
→Preferences: Open User Settings (JSON)
) - Add the following configuration:
{
"mcp": {
"servers": {
"datadog": {
"command": "node",
"args": [
"/path/to/datadog-mcp/build/index.js"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
}
If you're using Docker, you can configure it like this:
{
"mcp": {
"servers": {
"datadog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"DD_API_KEY",
"-e",
"DD_APP_KEY",
"datadog-mcp"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
}
Alternatively, you can add this to a .vscode/mcp.json
file in your workspace (without the mcp
key):
{
"servers": {
"datadog": {
"command": "node",
"args": [
"/path/to/datadog-mcp/build/index.js"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
If you're using Docker, you can configure it like this:
{
"servers": {
"datadog": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"DD_API_KEY",
"-e",
"DD_APP_KEY",
"datadog-mcp"
],
"env": {
"DD_API_KEY": "<YOUR_DATADOG_API_KEY>",
"DD_APP_KEY": "<YOUR_DATADOG_APP_KEY>"
}
}
}
}
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.