Databricks MCP Server

Databricks MCP Server

A server that implements the Model Completion Protocol (MCP) to allow LLMs to interact with Databricks resources including clusters, jobs, notebooks, and SQL execution through natural language.

JustTryAI

Developer Tools
Visit Server

README

Databricks MCP Server

A Model Completion Protocol (MCP) server for Databricks that provides access to Databricks functionality via the MCP protocol. This allows LLM-powered tools to interact with Databricks clusters, jobs, notebooks, and more.

Features

  • MCP Protocol Support: Implements the MCP protocol to allow LLMs to interact with Databricks
  • Databricks API Integration: Provides access to Databricks REST API functionality
  • Tool Registration: Exposes Databricks functionality as MCP tools
  • Async Support: Built with asyncio for efficient operation

Available Tools

The Databricks MCP Server exposes the following tools:

  • list_clusters: List all Databricks clusters
  • create_cluster: Create a new Databricks cluster
  • terminate_cluster: Terminate a Databricks cluster
  • get_cluster: Get information about a specific Databricks cluster
  • start_cluster: Start a terminated Databricks cluster
  • list_jobs: List all Databricks jobs
  • run_job: Run a Databricks job
  • list_notebooks: List notebooks in a workspace directory
  • export_notebook: Export a notebook from the workspace
  • list_files: List files and directories in a DBFS path
  • execute_sql: Execute a SQL statement

Installation

Prerequisites

  • Python 3.10 or higher
  • uv package manager (recommended for MCP servers)

Setup

  1. Install uv if you don't have it already:

    # MacOS/Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # Windows (in PowerShell)
    irm https://astral.sh/uv/install.ps1 | iex
    

    Restart your terminal after installation.

  2. Clone the repository:

    git clone https://github.com/JustTryAI/databricks-mcp-server.git
    cd databricks-mcp-server
    
  3. Set up the project with uv:

    # Create and activate virtual environment
    uv venv
    
    # On Windows
    .\.venv\Scripts\activate
    
    # On Linux/Mac
    source .venv/bin/activate
    
    # Install dependencies in development mode
    uv pip install -e .
    
    # Install development dependencies
    uv pip install -e ".[dev]"
    
  4. Set up environment variables:

    # Windows
    set DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net
    set DATABRICKS_TOKEN=your-personal-access-token
    
    # Linux/Mac
    export DATABRICKS_HOST=https://your-databricks-instance.azuredatabricks.net
    export DATABRICKS_TOKEN=your-personal-access-token
    

    You can also create an .env file based on the .env.example template.

Running the MCP Server

To start the MCP server, run:

# Windows
.\start_mcp_server.ps1

# Linux/Mac
./start_mcp_server.sh

These wrapper scripts will execute the actual server scripts located in the scripts directory. The server will start and be ready to accept MCP protocol connections.

You can also directly run the server scripts from the scripts directory:

# Windows
.\scripts\start_mcp_server.ps1

# Linux/Mac
./scripts/start_mcp_server.sh

Querying Databricks Resources

The repository includes utility scripts to quickly view Databricks resources:

# View all clusters
uv run scripts/show_clusters.py

# View all notebooks
uv run scripts/show_notebooks.py

Project Structure

databricks-mcp-server/
├── src/                             # Source code
│   ├── __init__.py                  # Makes src a package
│   ├── __main__.py                  # Main entry point for the package
│   ├── main.py                      # Entry point for the MCP server
│   ├── api/                         # Databricks API clients
│   ├── core/                        # Core functionality
│   ├── server/                      # Server implementation
│   │   ├── databricks_mcp_server.py # Main MCP server
│   │   └── app.py                   # FastAPI app for tests
│   └── cli/                         # Command-line interface
├── tests/                           # Test directory
├── scripts/                         # Helper scripts
│   ├── start_mcp_server.ps1         # Server startup script (Windows)
│   ├── run_tests.ps1                # Test runner script
│   ├── show_clusters.py             # Script to show clusters
│   └── show_notebooks.py            # Script to show notebooks
├── examples/                        # Example usage
├── docs/                            # Documentation
└── pyproject.toml                   # Project configuration

See project_structure.md for a more detailed view of the project structure.

Development

Code Standards

  • Python code follows PEP 8 style guide with a maximum line length of 100 characters
  • Use 4 spaces for indentation (no tabs)
  • Use double quotes for strings
  • All classes, methods, and functions should have Google-style docstrings
  • Type hints are required for all code except tests

Linting

The project uses the following linting tools:

# Run all linters
uv run pylint src/ tests/
uv run flake8 src/ tests/
uv run mypy src/

Testing

The project uses pytest for testing. To run the tests:

# Run all tests with our convenient script
.\scripts\run_tests.ps1

# Run with coverage report
.\scripts\run_tests.ps1 -Coverage

# Run specific tests with verbose output
.\scripts\run_tests.ps1 -Verbose -Coverage tests/test_clusters.py

You can also run the tests directly with pytest:

# Run all tests
uv run pytest tests/

# Run with coverage report
uv run pytest --cov=src tests/ --cov-report=term-missing

A minimum code coverage of 80% is the goal for the project.

Documentation

  • API documentation is generated using Sphinx and can be found in the docs/api directory
  • All code includes Google-style docstrings
  • See the examples/ directory for usage examples

Examples

Check the examples/ directory for usage examples. To run examples:

# Run example scripts with uv
uv run examples/direct_usage.py
uv run examples/mcp_client_usage.py

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Ensure your code follows the project's coding standards
  2. Add tests for any new functionality
  3. Update documentation as necessary
  4. Verify all tests pass before submitting

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
MCP Package Docs Server

MCP Package Docs Server

Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.

Featured
Local
TypeScript
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Linear MCP Server

Linear MCP Server

Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.

Featured
JavaScript
mermaid-mcp-server

mermaid-mcp-server

A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.

Featured
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python