
Databricks MCP Server
A Model Context Protocol server that enables AI assistants to interact with Databricks workspaces, allowing them to browse Unity Catalog, query metadata, sample data, and execute SQL queries.
README
Databricks MCP Server
A Model Context Protocol (MCP) server that provides seamless integration with Databricks Unity Catalog. This server enables AI assistants to interact with your Databricks workspace, query metadata, sample data, and perform various Unity Catalog operations.
Features
- Unity Catalog Integration: Browse catalogs, schemas, and tables
- Metadata Querying: Get detailed information about tables, columns, and properties
- Data Sampling: Sample data from tables for analysis
- SQL Query Execution: Run SQL queries against your Databricks warehouses
- Table Search: Search for tables by name or metadata
- Data Discovery: Advanced search and filtering capabilities
- Data Quality Insights: Basic data quality analysis
- Lineage Information: Table lineage tracking (when available)
Installation
Prerequisites
- Python 3.8 or higher
- Databricks workspace access
- Databricks personal access token
Install from Source
git clone <repository-url>
cd databricks-mcp-server
pip install -e .
Install Development Dependencies
pip install -e ".[dev]"
Configuration
Environment Variables
Set the following environment variables:
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_TOKEN="your-personal-access-token"
export DATABRICKS_WAREHOUSE_ID="your-warehouse-id" # Optional but recommended
export LOG_LEVEL="INFO" # Optional
Configuration File
Alternatively, create a config.json
file:
{
"databricks_host": "https://your-workspace.cloud.databricks.com",
"databricks_token": "your-personal-access-token",
"databricks_warehouse_id": "your-warehouse-id",
"log_level": "INFO"
}
Usage
Running the Server
# Run directly
python -m databricks_mcp_server.server
# Or use the installed command
databricks-mcp-server
MCP Client Integration
The server implements the Model Context Protocol and can be used with any MCP-compatible client. Here's an example configuration for Claude Desktop:
{
"mcpServers": {
"databricks": {
"command": "databricks-mcp-server",
"env": {
"DATABRICKS_HOST": "https://your-workspace.cloud.databricks.com",
"DATABRICKS_TOKEN": "your-token"
}
}
}
}
Available Tools
Catalog Operations
list_catalogs
: List all Unity Catalog catalogslist_schemas
: List schemas in a cataloglist_tables
: List tables in a schema
Table Operations
describe_table
: Get detailed table information including columns and metadatasample_table
: Sample data from a table (configurable limit)search_tables
: Search for tables by name or metadata
Query Operations
execute_query
: Execute SQL queries against Databricks warehousesget_table_lineage
: Get lineage information for tables
Resources
The server exposes Databricks resources through URIs:
databricks://catalog/{catalog_name}
: Catalog informationdatabricks://catalog/{catalog_name}/{schema_name}
: Schema informationdatabricks://catalog/{catalog_name}/{schema_name}/{table_name}
: Table information
Examples
Basic Usage
from databricks_mcp_server import DatabricksClient
# Initialize client
client = await DatabricksClient.create()
# List catalogs
catalogs = await client.list_catalogs()
print(f"Found {len(catalogs)} catalogs")
# Get table info
table_info = await client.describe_table("main", "default", "my_table")
print(f"Table has {len(table_info.columns)} columns")
# Sample data
sample = await client.sample_table("main", "default", "my_table", limit=5)
print(f"Sampled {sample.row_count} rows")
Advanced Data Discovery
from databricks_mcp_server import UnityCatalogManager
# Initialize manager
manager = UnityCatalogManager(client)
# Discover tables with patterns
results = await manager.discover_data(
search_patterns=["customer", "user"],
catalogs=["main", "analytics"],
include_metadata=True
)
print(f"Found {results.total_tables} matching tables")
Development
Running Tests
pytest
Code Formatting
black src/ tests/
isort src/ tests/
Type Checking
mypy src/
Troubleshooting
Common Issues
- Authentication Error: Verify your
DATABRICKS_TOKEN
is valid and has appropriate permissions - Connection Error: Check that
DATABRICKS_HOST
is correct and accessible - No Warehouses: Ensure you have at least one SQL warehouse running in your workspace
Debugging
Enable debug logging:
export LOG_LEVEL=DEBUG
databricks-mcp-server
Configuration Validation
Use the built-in validation:
from databricks_mcp_server.utils import validate_databricks_config
validation = validate_databricks_config()
if not validation["valid"]:
print("Configuration errors:", validation["errors"])
Security Considerations
- Never commit access tokens to version control
- Use environment variables or secure configuration management
- Limit token permissions to minimum required scope
- Consider using service principals for production deployments
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run the test suite
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues and questions:
- Check the troubleshooting section
- Search existing issues
- Create a new issue with detailed information
Changelog
v0.1.0
- Initial release
- Basic Unity Catalog integration
- Table metadata and sampling
- SQL query execution
- MCP server implementation
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.