Databricks MCP Server

Databricks MCP Server

Enables AI assistants like Claude to interact with Databricks workspaces through custom prompts and tools. Supports running SQL queries, managing clusters, creating jobs, and accessing workspace resources via the Databricks SDK.

Category
Visit Server

README

Databricks MCP Server

Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace. Inspiration - https://github.com/databricks-solutions/custom-mcp-databricks-app#

What is this?

This template lets you create an MCP server that runs on Databricks Apps. You can:

  • Add prompts as simple markdown files in the prompts/ folder
  • Create tools as Python functions that leverage Databricks SDK

A bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.

How it Works

Architecture Overview

┌─────────────┐       MCP Protocol      ┌──────────────────┐        OAuth         ┌─────────────────┐
│   Claude    │ ◄─────────────────────► │  dba-mcp-proxy   │ ◄──────────────────► │ Databricks App  │
│    CLI      │     (stdio/JSON-RPC)    │ (local process)  │    (HTTPS/SSE)      │  (MCP Server)   │
└─────────────┘                         └──────────────────┘                      └─────────────────┘
                                                ▲                                           │
                                                │                                           ▼
                                                └────────── Databricks OAuth ──────► Workspace APIs

Components

  1. MCP Server (server/app.py): A FastAPI app with integrated MCP server that:

    • Dynamically loads prompts from prompts/*.md files
    • Exposes Python functions as MCP tools via @mcp_server.tool decorator
    • Handles both HTTP requests and MCP protocol over Server-Sent Events
  2. Prompts (prompts/): Simple markdown files where:

    • Filename = prompt name (e.g., check_system.mdcheck_system prompt)
    • First line with # = description
    • File content = what gets returned to Claude
  3. Local Proxy (dba_mcp_proxy/): Authenticates and proxies MCP requests:

    • Handles Databricks OAuth authentication automatically
    • Translates between Claude's stdio protocol and HTTP/SSE
    • Works with both local development and deployed apps

Prerequisites

  • Claude CLI
  • Subscription to Databricks apps
  • python

Local Development

# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh

# Start dev server
./watch.sh

# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000"  # Local dev server

# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
  uvx --from git+ssh://git@github.com/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
  --databricks-host $DATABRICKS_HOST \
  --databricks-app-url $DATABRICKS_APP_URL

## Customization Guide

This template uses [FastMCP](https://github.com/jlowin/fastmcp), a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:

- **`@mcp_server.prompt`** - For registering prompts that return text
- **`@mcp_server.tool`** - For registering tools that execute functions

### Adding Prompts

The easiest way is to create a markdown file in the `prompts/` directory:

```markdown
# Get cluster information

List all available clusters in the workspace with their current status

The prompt will be automatically loaded with:

  • Name: filename without extension (e.g., get_clusters.mdget_clusters)
  • Description: first line after #
  • Content: entire file content

Alternatively, you can register prompts as functions in server/app.py:

@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
    # This can include dynamic logic, API calls, etc.
    w = get_workspace_client()
    current_user = w.current_user.me()
    return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"

We auto-load prompts/ for convenience, but function-based prompts are useful when you need dynamic content.

Adding Tools

Add a function in server/app.py using the @mcp_server.tool decorator:

@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
    """List Databricks clusters by status."""
    w = get_workspace_client()
    clusters = []
    for cluster in w.clusters.list():
        if cluster.state.name == status:
            clusters.append({
                "id": cluster.cluster_id,
                "name": cluster.cluster_name,
                "state": cluster.state.name
            })
    return {"clusters": clusters}

Tools must:

  • Use the @mcp_server.tool decorator
  • Have a docstring (becomes the tool description)
  • Return JSON-serializable data (dict, list, str, etc.)
  • Accept only JSON-serializable parameters

Deployment

# Deploy to Databricks Apps
./deploy.sh

# Check status and get your app URL
./app_status.sh

Your MCP server will be available at https://your-app.databricksapps.com/mcp/

The app_status.sh script will show your deployed app URL, which you'll need for the DATABRICKS_APP_URL environment variable when adding the MCP server to Claude.

Authentication

  • Local Development: No authentication required
  • Production: OAuth is handled automatically by the proxy using your Databricks CLI credentials

Examples

Using with Claude

Once added, you can interact with your MCP server in Claude:

Human: What prompts are available?

Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity

Sample Tool Usage

Human: Can you execute a SQL query to show databases?

Claude: I'll execute that SQL query for you using the execute_dbsql tool.

[Executes SQL and returns results]

Project Structure

├── server/                    # FastAPI backend with MCP server
│   ├── app.py                # Main application + MCP tools
│   └── routers/              # API endpoints
├── prompts/                  # MCP prompts (markdown files)
│   ├── check_system.md      
│   ├── list_files.md        
│   └── ping_google.md       
├── dba_mcp_proxy/           # MCP proxy for Claude CLI
│   └── mcp_client.py        # OAuth + proxy implementation
├── client/                  # React frontend (optional)
├── scripts/                 # Development tools
└── pyproject.toml          # Python package configuration

Advanced Usage

Environment Variables

Configure in .env.local:

DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token  # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id  # For SQL tools

Creating Complex Tools

Tools can access the full Databricks SDK:

@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
    """Create a Databricks job."""
    w = get_workspace_client()
    job = w.jobs.create(
        name=name,
        tasks=[{
            "task_key": "main",
            "notebook_task": {"notebook_path": notebook_path},
            "existing_cluster_id": cluster_id
        }]
    )
    return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}

Testing Your MCP Server

This template includes comprehensive testing tools for validating MCP functionality at multiple levels.

Quick Verification

After adding the MCP server to Claude, verify it's working:

# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude

# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude

Comprehensive Testing Suite

The claude_scripts/ directory contains 6 testing tools for thorough MCP validation:

Command Line Tests

# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh      # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh     # MCP proxy client tests

# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh     # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh    # Full end-to-end MCP proxy tests

Interactive Web UI Tests

# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh        # Local server web interface
./claude_scripts/inspect_remote_mcp.sh       # Remote server web interface

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured