
Databricks MCP Server
Enables AI assistants like Claude to interact with Databricks workspaces through custom prompts and tools. Supports running SQL queries, managing clusters, creating jobs, and accessing workspace resources via the Databricks SDK.
README
Databricks MCP Server
Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace. Inspiration - https://github.com/databricks-solutions/custom-mcp-databricks-app#
What is this?
This template lets you create an MCP server that runs on Databricks Apps. You can:
- Add prompts as simple markdown files in the
prompts/
folder - Create tools as Python functions that leverage Databricks SDK
A bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.
How it Works
Architecture Overview
┌─────────────┐ MCP Protocol ┌──────────────────┐ OAuth ┌─────────────────┐
│ Claude │ ◄─────────────────────► │ dba-mcp-proxy │ ◄──────────────────► │ Databricks App │
│ CLI │ (stdio/JSON-RPC) │ (local process) │ (HTTPS/SSE) │ (MCP Server) │
└─────────────┘ └──────────────────┘ └─────────────────┘
▲ │
│ ▼
└────────── Databricks OAuth ──────► Workspace APIs
Components
-
MCP Server (
server/app.py
): A FastAPI app with integrated MCP server that:- Dynamically loads prompts from
prompts/*.md
files - Exposes Python functions as MCP tools via
@mcp_server.tool
decorator - Handles both HTTP requests and MCP protocol over Server-Sent Events
- Dynamically loads prompts from
-
Prompts (
prompts/
): Simple markdown files where:- Filename = prompt name (e.g.,
check_system.md
→check_system
prompt) - First line with
#
= description - File content = what gets returned to Claude
- Filename = prompt name (e.g.,
-
Local Proxy (
dba_mcp_proxy/
): Authenticates and proxies MCP requests:- Handles Databricks OAuth authentication automatically
- Translates between Claude's stdio protocol and HTTP/SSE
- Works with both local development and deployed apps
Prerequisites
- Claude CLI
- Subscription to Databricks apps
- python
Local Development
# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh
# Start dev server
./watch.sh
# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000" # Local dev server
# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
uvx --from git+ssh://git@github.com/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
--databricks-host $DATABRICKS_HOST \
--databricks-app-url $DATABRICKS_APP_URL
## Customization Guide
This template uses [FastMCP](https://github.com/jlowin/fastmcp), a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:
- **`@mcp_server.prompt`** - For registering prompts that return text
- **`@mcp_server.tool`** - For registering tools that execute functions
### Adding Prompts
The easiest way is to create a markdown file in the `prompts/` directory:
```markdown
# Get cluster information
List all available clusters in the workspace with their current status
The prompt will be automatically loaded with:
- Name: filename without extension (e.g.,
get_clusters.md
→get_clusters
) - Description: first line after
#
- Content: entire file content
Alternatively, you can register prompts as functions in server/app.py
:
@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
# This can include dynamic logic, API calls, etc.
w = get_workspace_client()
current_user = w.current_user.me()
return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"
We auto-load prompts/
for convenience, but function-based prompts are useful when you need dynamic content.
Adding Tools
Add a function in server/app.py
using the @mcp_server.tool
decorator:
@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
"""List Databricks clusters by status."""
w = get_workspace_client()
clusters = []
for cluster in w.clusters.list():
if cluster.state.name == status:
clusters.append({
"id": cluster.cluster_id,
"name": cluster.cluster_name,
"state": cluster.state.name
})
return {"clusters": clusters}
Tools must:
- Use the
@mcp_server.tool
decorator - Have a docstring (becomes the tool description)
- Return JSON-serializable data (dict, list, str, etc.)
- Accept only JSON-serializable parameters
Deployment
# Deploy to Databricks Apps
./deploy.sh
# Check status and get your app URL
./app_status.sh
Your MCP server will be available at https://your-app.databricksapps.com/mcp/
The app_status.sh
script will show your deployed app URL, which you'll need for the DATABRICKS_APP_URL
environment variable when adding the MCP server to Claude.
Authentication
- Local Development: No authentication required
- Production: OAuth is handled automatically by the proxy using your Databricks CLI credentials
Examples
Using with Claude
Once added, you can interact with your MCP server in Claude:
Human: What prompts are available?
Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity
Sample Tool Usage
Human: Can you execute a SQL query to show databases?
Claude: I'll execute that SQL query for you using the execute_dbsql tool.
[Executes SQL and returns results]
Project Structure
├── server/ # FastAPI backend with MCP server
│ ├── app.py # Main application + MCP tools
│ └── routers/ # API endpoints
├── prompts/ # MCP prompts (markdown files)
│ ├── check_system.md
│ ├── list_files.md
│ └── ping_google.md
├── dba_mcp_proxy/ # MCP proxy for Claude CLI
│ └── mcp_client.py # OAuth + proxy implementation
├── client/ # React frontend (optional)
├── scripts/ # Development tools
└── pyproject.toml # Python package configuration
Advanced Usage
Environment Variables
Configure in .env.local
:
DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id # For SQL tools
Creating Complex Tools
Tools can access the full Databricks SDK:
@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
"""Create a Databricks job."""
w = get_workspace_client()
job = w.jobs.create(
name=name,
tasks=[{
"task_key": "main",
"notebook_task": {"notebook_path": notebook_path},
"existing_cluster_id": cluster_id
}]
)
return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}
Testing Your MCP Server
This template includes comprehensive testing tools for validating MCP functionality at multiple levels.
Quick Verification
After adding the MCP server to Claude, verify it's working:
# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude
# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude
Comprehensive Testing Suite
The claude_scripts/
directory contains 6 testing tools for thorough MCP validation:
Command Line Tests
# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh # MCP proxy client tests
# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh # Full end-to-end MCP proxy tests
Interactive Web UI Tests
# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh # Local server web interface
./claude_scripts/inspect_remote_mcp.sh # Remote server web interface
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.