Databricks MCP Server

Databricks MCP Server

Enables AI assistants like Claude to interact with Databricks workspaces through secure OAuth authentication. Supports custom prompts, tools for cluster management, SQL execution, and job operations via the Databricks SDK.

Category
Visit Server

README

awesome-databricks-mcp

Host Model Context Protocol (MCP) prompts and tools on Databricks Apps, enabling AI assistants like Claude to interact with your Databricks workspace through a secure, authenticated interface.

What is this?

This template lets you create an MCP server that runs on Databricks Apps. You can:

  • 📝 Add prompts as simple markdown files in the prompts/ folder
  • 🛠️ Create tools as Python functions that leverage Databricks SDK
  • 🔐 Authenticate securely with OAuth through Databricks Apps
  • 🚀 Deploy instantly to make your MCP server accessible to Claude
  • 🖥️ Web Interface with a modern React TypeScript frontend for MCP discovery
  • 🧪 Comprehensive Testing with automated MCP validation tools

Think of it as a bridge between Claude and your Databricks workspace - you define what Claude can see and do, and this server handles the rest.

How it Works

Architecture Overview

┌─────────────┐       MCP Protocol      ┌──────────────────┐        OAuth         ┌─────────────────┐
│   Claude    │ ◄─────────────────────► │  dba-mcp-proxy   │ ◄──────────────────► │ Databricks App  │
│    CLI      │     (stdio/JSON-RPC)    │ (local process)  │    (HTTPS/SSE)      │  (MCP Server)   │
└─────────────┘                         └──────────────────┘                      └─────────────────┘
                                                ▲                                           │
                                                │                                           ▼
                                                └────────── Databricks OAuth ──────► Workspace APIs

Components

  1. MCP Server (server/app.py): A FastAPI app with integrated MCP server that:

    • Dynamically loads prompts from prompts/*.md files
    • Exposes Python functions as MCP tools via @mcp_server.tool decorator
    • Handles both HTTP requests and MCP protocol over Server-Sent Events
  2. React Frontend (client/): A modern TypeScript React application that:

    • Provides a web interface for MCP discovery and testing
    • Shows available prompts, tools, and MCP configuration
    • Includes copy-paste setup commands for Claude integration
    • Built with TailwindCSS, Radix UI, and modern React patterns
  3. Prompts (prompts/): Simple markdown files where:

    • Filename = prompt name (e.g., check_system.mdcheck_system prompt)
    • First line with # = description
    • File content = what gets returned to Claude
  4. Local Proxy (dba_mcp_proxy/): Authenticates and proxies MCP requests:

    • Handles Databricks OAuth authentication automatically
    • Translates between Claude's stdio protocol and HTTP/SSE
    • Works with both local development and deployed apps

🎬 Demo

This 10-minute video shows you how to set up and use a Databricks MCP server with Claude: https://www.youtube.com/watch?v=oKE59zgb6e0

Databricks MCP Demo

This video demonstrates creating your own MCP server with a custom jobs interface in Claude.

Quick Start

Create Your Own MCP Server

Step 1: Use this template

Use this template

Or use the GitHub CLI:

gh repo create my-mcp-server --template databricks-solutions/custom-mcp-databricks-app --private

Step 2: Clone and setup

# Clone your new repository
git clone https://github.com/YOUR-USERNAME/my-mcp-server.git
cd my-mcp-server

# Run the interactive setup
./setup.sh

This will:

  • Configure Databricks authentication
  • Set your MCP server name
  • Install all dependencies (Python + Node.js)
  • Create your .env.local file

Step 3: Deploy with Claude

In Claude Code, run:

/setup-mcp

This will:

  • Deploy your MCP server to Databricks Apps
  • Configure the MCP integration
  • Show you available prompts and tools

Then restart Claude Code to use your new MCP server.

Add to Claude CLI

After deployment, add your MCP server to Claude:

# Set your Databricks configuration
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="https://your-app.databricksapps.com"  # Get this from ./app_status.sh
export SERVER_NAME="your-server-name"  # This comes from config.yaml (set during ./setup.sh)

# Add your MCP server to Claude (user-scoped)
claude mcp add $SERVER_NAME --scope user -- \
  uvx --from git+ssh://git@github.com/YOUR-USERNAME/your-repo.git dba-mcp-proxy \
  --databricks-host $DATABRICKS_HOST \
  --databricks-app-url $DATABRICKS_APP_URL

Local Development

# Clone and setup
git clone <your-repo>
cd <your-repo>
./setup.sh

# Start dev server (both backend and frontend)
./watch.sh

# Set your configuration for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000"  # Local dev server

# Add to Claude for local testing
claude mcp add databricks-mcp-local --scope local -- \
  uvx --from git+ssh://git@github.com/YOUR-ORG/YOUR-REPO.git dba-mcp-proxy \
  --databricks-host $DATABRICKS_HOST \
  --databricks-app-url $DATABRICKS_APP_URL

Running Locally

Prerequisites

Before running the MCP server locally, ensure you have:

  • Python 3.9+ and Node.js 18+ installed
  • Databricks CLI configured with databricks auth login
  • Git for cloning the repository
  • uv package manager (recommended) or pip for Python dependencies
  • bun (recommended) or npm for Node.js dependencies

Step-by-Step Local Setup

1. Clone and Configure

# Clone your repository
git clone https://github.com/YOUR-USERNAME/your-mcp-server.git
cd your-mcp-server

# Run the interactive setup script
./setup.sh

The setup script will:

  • Install Python dependencies using uv or pip
  • Install Node.js dependencies using bun or npm
  • Configure your Databricks workspace settings
  • Create a .env.local file with your configuration

2. Start the Development Server

# Start both backend (FastAPI) and frontend (React) servers
./watch.sh

This command starts:

  • Backend: FastAPI server on http://localhost:8000
  • Frontend: React development server on http://localhost:3000
  • File watching: Automatic reloading when files change

3. Verify Local Setup

Open your browser and navigate to:

  • Backend API: http://localhost:8000/docs (FastAPI Swagger UI)
  • Frontend: http://localhost:3000 (React application)
  • MCP Endpoint: http://localhost:8000/mcp/ (MCP server)

4. Test with Claude CLI

# Set environment variables for local testing
export DATABRICKS_HOST="https://your-workspace.cloud.databricks.com"
export DATABRICKS_APP_URL="http://localhost:8000"

# Add the local MCP server to Claude
claude mcp add databricks-mcp-local --scope local -- \
  uvx --from git+ssh://git@github.com/YOUR-USERNAME/your-repo.git dba-mcp-proxy \
  --databricks-host $DATABRICKS_HOST \
  --databricks-app-url $DATABRICKS_APP_URL

# Test the connection
echo "What MCP prompts are available from databricks-mcp-local?" | claude

Development Workflow

Making Changes

  1. Edit prompts: Modify files in prompts/ directory
  2. Edit tools: Update functions in server/tools.py
  3. Edit frontend: Modify React components in client/src/
  4. Edit backend: Update FastAPI routes in server/

All changes automatically reload thanks to the file watchers in ./watch.sh.

Testing Changes

# Test local MCP server directly
./claude_scripts/test_local_mcp_curl.sh

# Test with MCP proxy
./claude_scripts/test_local_mcp_proxy.sh

# Use the web-based MCP Inspector
./claude_scripts/inspect_local_mcp.sh

Debugging

  • Backend logs: Check terminal output from ./watch.sh
  • Frontend logs: Check browser console and terminal output
  • MCP logs: Monitor the /mcp/ endpoint responses
  • Database queries: Check Databricks workspace logs

Local vs Production Differences

Feature Local Development Production
Authentication Databricks CLI token OAuth via Databricks Apps
URL http://localhost:8000 https://your-app.databricksapps.com
HTTPS No (HTTP only) Yes (HTTPS required)
File watching Yes (auto-reload) No
Debug mode Yes No
Logs Terminal output Databricks Apps logs

Troubleshooting Local Issues

Common Problems

Port conflicts:

# Check what's using port 8000
lsof -i :8000

# Kill process if needed
kill -9 <PID>

Dependencies not found:

# Reinstall Python dependencies
uv sync

# Reinstall Node.js dependencies
cd client && bun install

Databricks authentication:

# Refresh Databricks CLI credentials
databricks auth login

# Verify configuration
databricks config get

MCP connection issues:

# Test MCP endpoint directly
curl http://localhost:8000/mcp/

# Check Claude MCP configuration
claude mcp list

Performance Tips

  • Use uv instead of pip for faster Python dependency management
  • Use bun instead of npm for faster Node.js dependency management
  • The ./watch.sh script uses uvicorn --reload for fast backend development
  • Frontend uses Vite for fast hot module replacement

Customization Guide

This template uses FastMCP, a framework that makes it easy to build MCP servers. FastMCP provides two main decorators for extending functionality:

  • @mcp_server.prompt - For registering prompts that return text
  • @mcp_server.tool - For registering tools that execute functions

Adding Prompts

The easiest way is to create a markdown file in the prompts/ directory:

# Get cluster information

List all available clusters in the workspace with their current status

The prompt will be automatically loaded with:

  • Name: filename without extension (e.g., get_clusters.mdget_clusters)
  • Description: first line after #
  • Content: entire file content

Alternatively, you can register prompts as functions in server/app.py:

@mcp_server.prompt(name="dynamic_status", description="Get dynamic system status")
async def get_dynamic_status():
    # This can include dynamic logic, API calls, etc.
    w = get_workspace_client()
    current_user = w.current_user.me()
    return f"Current user: {current_user.display_name}\nWorkspace: {DATABRICKS_HOST}"

We auto-load prompts/ for convenience, but function-based prompts are useful when you need dynamic content.

Adding Tools

Add a function in server/tools.py using the @mcp_server.tool decorator:

@mcp_server.tool
def list_clusters(status: str = "RUNNING") -> dict:
    """List Databricks clusters by status."""
    w = get_workspace_client()
    clusters = []
    for cluster in w.clusters.list():
        if cluster.state.name == status:
            clusters.append({
                "id": cluster.cluster_id,
                "name": cluster.cluster_name,
                "state": cluster.state.name
            })
    return {"clusters": clusters}

Tools must:

  • Use the @mcp_server.tool decorator
  • Have a docstring (becomes the tool description)
  • Return JSON-serializable data (dict, list, str, etc.)
  • Accept only JSON-serializable parameters

Available MCP Tools

This template includes a comprehensive set of Databricks tools:

SQL & Data Tools

  • execute_dbsql - Execute SQL queries on Databricks SQL warehouses
  • list_warehouses - List all SQL warehouses in the workspace

File System Tools

  • list_dbfs_files - Browse DBFS file system
  • upload_dbfs_file - Upload files to DBFS
  • download_dbfs_file - Download files from DBFS

Unity Catalog Tools

  • list_uc_catalogs - List Unity Catalog catalogs
  • describe_uc_catalog - Get detailed catalog information
  • describe_uc_schema - Get schema details and tables
  • describe_uc_table - Get table metadata and lineage
  • list_uc_volumes - List volumes in a Unity Catalog schema
  • describe_uc_volume - Get detailed volume information
  • list_uc_functions - List functions in a Unity Catalog schema
  • describe_uc_function - Get detailed function information
  • list_uc_models - List models in a Unity Catalog schema
  • describe_uc_model - Get detailed model information
  • list_external_locations - List external locations
  • describe_external_location - Get external location details
  • list_storage_credentials - List storage credentials
  • describe_storage_credential - Get storage credential details
  • list_uc_permissions - List permissions for UC objects
  • search_uc_objects - Search for UC objects by name/description
  • get_table_statistics - Get table statistics and metadata
  • list_metastores - List all metastores
  • describe_metastore - Get metastore details
  • list_uc_tags - List available tags
  • apply_uc_tags - Apply tags to UC objects
  • list_data_quality_monitors - List data quality monitors
  • get_data_quality_results - Get monitoring results
  • create_data_quality_monitor - Create data quality monitor

System Tools

  • health - Check MCP server and Databricks connection status
  • get_workspace_info - Get workspace configuration details

Deployment

# Deploy to Databricks Apps
./deploy.sh

# Check status and get your app URL
./app_status.sh

Your MCP server will be available at https://your-app.databricksapps.com/mcp/

The app_status.sh script will show your deployed app URL, which you'll need for the DATABRICKS_APP_URL environment variable when adding the MCP server to Claude.

Authentication

  • Local Development: No authentication required
  • Production: OAuth is handled automatically by the proxy using your Databricks CLI credentials

Examples

Using with Claude

Once added, you can interact with your MCP server in Claude:

Human: What prompts are available?

Claude: I can see the following prompts from your Databricks MCP server:
- check_system: Get system information
- list_files: List files in the current directory
- ping_google: Check network connectivity

Sample Tool Usage

Human: Can you execute a SQL query to show databases?

Claude: I'll execute that SQL query for you using the execute_dbsql tool.

[Executes SQL and returns results]

Project Structure

├── server/                    # FastAPI backend with MCP server
│   ├── app.py                # Main application + MCP server setup
│   ├── tools.py              # MCP tools implementation
│   └── routers/              # API endpoints
├── client/                   # React TypeScript frontend
│   ├── src/                  # Source code
│   │   ├── components/       # Reusable UI components
│   │   ├── pages/            # Page components
│   │   └── fastapi_client/   # Auto-generated API client
│   ├── package.json          # Node.js dependencies
│   └── tailwind.config.js    # TailwindCSS configuration
├── prompts/                  # MCP prompts (markdown files)
│   ├── check_system.md      
│   ├── list_files.md        
│   └── ping_google.md       
├── dba_mcp_proxy/           # MCP proxy for Claude CLI
│   └── mcp_client.py        # OAuth + proxy implementation
├── claude_scripts/          # Comprehensive testing tools
│   ├── test_local_mcp_*.sh  # Local MCP testing scripts
│   ├── test_remote_mcp_*.sh # Remote MCP testing scripts
│   ├── test_uc_tools.py     # Unity Catalog tools testing
│   └── inspect_*.sh         # Web-based MCP Inspector
├── docs/                     # Documentation
│   ├── databricks_apis/      # Databricks API documentation
│   └── unity_catalog_tools.md # Unity Catalog tools documentation
├── scripts/                  # Development tools
└── pyproject.toml          # Python package configuration

Advanced Usage

Environment Variables

Configure in .env.local:

DATABRICKS_HOST=https://your-workspace.cloud.databricks.com
DATABRICKS_TOKEN=your-token  # For local development
DATABRICKS_SQL_WAREHOUSE_ID=your-warehouse-id  # For SQL tools

Creating Complex Tools

Tools can access the full Databricks SDK:

@mcp_server.tool
def create_job(name: str, notebook_path: str, cluster_id: str) -> dict:
    """Create a Databricks job."""
    w = get_workspace_client()
    job = w.jobs.create(
        name=name,
        tasks=[{
            "task_key": "main",
            "notebook_task": {"notebook_path": notebook_path},
            "existing_cluster_id": cluster_id
        }]
    )
    return {"job_id": job.job_id, "run_now_url": f"{DATABRICKS_HOST}/#job/{job.job_id}"}

Testing Your MCP Server

This template includes comprehensive testing tools for validating MCP functionality at multiple levels.

Quick Verification

After adding the MCP server to Claude, verify it's working:

# List available prompts and tools
echo "What MCP prompts are available from databricks-mcp?" | claude

# Test a specific prompt
echo "Use the check_system prompt from databricks-mcp" | claude

Comprehensive Testing Suite

The claude_scripts/ directory contains 6 testing tools for thorough MCP validation:

Command Line Tests

# Test local MCP server (requires ./watch.sh to be running)
./claude_scripts/test_local_mcp_curl.sh      # Direct HTTP/curl tests with session handling
./claude_scripts/test_local_mcp_proxy.sh     # MCP proxy client tests

# Test remote MCP server (requires Databricks auth and deployment)
./claude_scripts/test_remote_mcp_curl.sh     # OAuth + HTTP tests with dynamic URL discovery
./claude_scripts/test_remote_mcp_proxy.sh    # Full end-to-end MCP proxy tests

Interactive Web UI Tests

# Launch MCP Inspector for visual testing (requires ./watch.sh for local)
./claude_scripts/inspect_local_mcp.sh        # Local server web interface
./claude_scripts/inspect_remote_mcp.sh       # Remote server web interface

MCP Inspector Features:

  • 🖥️ Web-based interface for interactive MCP server testing
  • 🔧 Visual tool execution with parameter input forms
  • 📊 Real-time request/response monitoring
  • 🐛 Protocol-level debugging and error inspection
  • 📋 Complete tool and resource discovery

What Each Test Validates

Test Type Authentication Protocol Session Management Tool Discovery
curl tests
proxy tests
MCP Inspector

All tests dynamically discover app URLs and handle OAuth authentication automatically.

See claude_scripts/README.md for detailed documentation.

Web Interface Testing

The React frontend provides an additional way to test your MCP server:

# Start the development server
./watch.sh

# Open http://localhost:3000 in your browser
# Navigate to the MCP Discovery page to see:
# - Available prompts and tools
# - MCP configuration details
# - Copy-paste setup commands for Claude

Troubleshooting

  • Authentication errors: Run databricks auth login to refresh credentials
  • MCP not found: Ensure the app is deployed and accessible
  • Tool errors: Check logs at https://your-app.databricksapps.com/logz
  • MCP connection issues:
    • Check Claude logs: tail -f ~/Library/Logs/Claude/*.log
    • Verify the proxy works: uvx --from git+ssh://... dba-mcp-proxy --help
    • Test with echo pipe: echo "list your mcp commands" | claude
  • Cached version issues: If you get errors about missing arguments after an update:
    # Clear uvx cache for this package
    rm -rf ~/.cache/uv/git-v0/checkouts/*/
    # Or clear entire uv cache
    uv cache clean
    
  • Frontend build issues: Ensure Node.js dependencies are installed:
    cd client
    bun install
    

Contributing

  1. Fork the repository
  2. Add your prompts and tools
  3. Test locally with ./watch.sh
  4. Submit a pull request

License

See LICENSE.md

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured