Databricks MCP Server

Databricks MCP Server

A Model Context Protocol server that enables LLMs to interact with Databricks workspaces through natural language, allowing SQL query execution and job management operations.

JordiNeil

Developer Tools
Visit Server

README

Databricks MCP Server

A Model Context Protocol (MCP) server that connects to Databricks API, allowing LLMs to run SQL queries, list jobs, and get job status.

Features

  • Run SQL queries on Databricks SQL warehouses
  • List all Databricks jobs
  • Get status of specific Databricks jobs
  • Get detailed information about Databricks jobs

Prerequisites

  • Python 3.7+
  • Databricks workspace with:
    • Personal access token
    • SQL warehouse endpoint
    • Permissions to run queries and access jobs

Setup

  1. Clone this repository
  2. Create and activate a virtual environment (recommended):
    python -m venv .venv
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
  3. Install dependencies:
    pip install -r requirements.txt
    
  4. Create a .env file in the root directory with the following variables:
    DATABRICKS_HOST=your-databricks-instance.cloud.databricks.com
    DATABRICKS_TOKEN=your-personal-access-token
    DATABRICKS_HTTP_PATH=/sql/1.0/warehouses/your-warehouse-id
    
  5. Test your connection (optional but recommended):
    python test_connection.py
    

Obtaining Databricks Credentials

  1. Host: Your Databricks instance URL (e.g., your-instance.cloud.databricks.com)
  2. Token: Create a personal access token in Databricks:
    • Go to User Settings (click your username in the top right)
    • Select "Developer" tab
    • Click "Manage" under "Access tokens"
    • Generate a new token, and save it immediately
  3. HTTP Path: For your SQL warehouse:
    • Go to SQL Warehouses in Databricks
    • Select your warehouse
    • Find the connection details and copy the HTTP Path

Running the Server

Start the MCP server:

python main.py

You can test the MCP server using the inspector by running

npx @modelcontextprotocol/inspector python3 main.py

Available MCP Tools

The following MCP tools are available:

  1. run_sql_query(sql: str) - Execute SQL queries on your Databricks SQL warehouse
  2. list_jobs() - List all Databricks jobs in your workspace
  3. get_job_status(job_id: int) - Get the status of a specific Databricks job by ID
  4. get_job_details(job_id: int) - Get detailed information about a specific Databricks job

Example Usage with LLMs

When used with LLMs that support the MCP protocol, this server enables natural language interaction with your Databricks environment:

  • "Show me all tables in the database"
  • "Run a query to count records in the customer table"
  • "List all my Databricks jobs"
  • "Check the status of job #123"
  • "Show me details about job #456"

Troubleshooting

Connection Issues

  • Ensure your Databricks host is correct and doesn't include https:// prefix
  • Check that your SQL warehouse is running and accessible
  • Verify your personal access token has the necessary permissions
  • Run the included test script: python test_connection.py

Security Considerations

  • Your Databricks personal access token provides direct access to your workspace
  • Secure your .env file and never commit it to version control
  • Consider using Databricks token with appropriate permission scopes only
  • Run this server in a secure environment

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
MCP Package Docs Server

MCP Package Docs Server

Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.

Featured
Local
TypeScript
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
@kazuph/mcp-taskmanager

@kazuph/mcp-taskmanager

Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.

Featured
Local
JavaScript
Linear MCP Server

Linear MCP Server

Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.

Featured
JavaScript
mermaid-mcp-server

mermaid-mcp-server

A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.

Featured
JavaScript
Jira-Context-MCP

Jira-Context-MCP

MCP server to provide Jira Tickets information to AI coding agents like Cursor

Featured
TypeScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python