Databento MCP
A Model Context Protocol server that provides access to Databento's historical and real-time market data, including trades, OHLCV bars, and order book depth. It enables AI assistants to perform financial data analysis, manage batch jobs, and convert market data between DBN and Parquet formats.
README
<p align="center"> <img src="https://raw.githubusercontent.com/deepentropy/databento-mcp/main/logo.svg" alt="Databento™ MCP Logo" width="100" height="100"> </p>
<h1 align="center">Databento™ MCP</h1>
<p align="center"> <strong>Model Context Protocol server for Databento™ market data</strong> </p>
<p align="center"> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/v/databento-mcp" alt="PyPI"></a> <a href="https://pypi.org/project/databento-mcp/"><img src="https://img.shields.io/pypi/pyversions/databento-mcp" alt="Python"></a> <a href="https://github.com/deepentropy/databento-mcp/blob/main/LICENSE"><img src="https://img.shields.io/github/license/deepentropy/databento-mcp" alt="License"></a> </p>
Installation
pip install databento-mcp
Quick Start
- Get your API key from Databento
- Configure your MCP client (see setup guides below)
- Start querying market data through your AI assistant
Setup Guides
Claude Desktop
Add to your configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"databento": {
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
}
}
GitHub Copilot CLI
Add the server to your Copilot CLI configuration:
gh copilot config set mcp-servers '{
"databento": {
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
}'
Or add to your ~/.config/gh-copilot/config.yml:
mcp-servers:
databento:
command: databento-mcp
env:
DATABENTO_API_KEY: your-api-key
See GitHub Copilot CLI MCP documentation for more details.
ChatGPT (via Developer Mode)
ChatGPT supports MCP servers through Developer Mode.
- Enable Developer Mode in ChatGPT settings
- Add an MCP server with the following configuration:
{
"name": "databento",
"command": "databento-mcp",
"env": {
"DATABENTO_API_KEY": "your-api-key"
}
}
See OpenAI Developer Mode documentation for detailed setup instructions.
Features
Historical Data
- Retrieve trades, OHLCV bars, market depth, and more
- Support for all Databento schemas (trades, mbp-1, mbp-10, ohlcv-*, etc.)
- Cost estimation before query execution
- Smart data summaries with statistics
Live Data
- Real-time market data streaming
- Configurable stream duration
- Multiple schema support
File Operations
- Read/write DBN format files
- Export to Apache Parquet
- Convert between formats
Batch Processing
- Submit large-scale batch jobs
- Monitor job status
- Download completed files
Reference Data
- Symbol metadata and definitions
- Symbology resolution
- Dataset discovery
- Publisher information
Quality & Performance
- Smart caching with configurable TTL
- Data quality analysis
- Connection pooling
- Comprehensive metrics
Available Tools
| Tool | Description |
|---|---|
health_check |
Check API connectivity and server status |
get_historical_data |
Retrieve historical market data |
get_live_data |
Stream real-time market data |
get_cost |
Estimate query cost before execution |
get_symbol_metadata |
Get instrument definitions and mappings |
search_instruments |
Search for symbols with wildcards |
list_datasets |
List available Databento datasets |
list_schemas |
List available data schemas |
resolve_symbols |
Convert between symbology types |
submit_batch_job |
Submit batch data download |
list_batch_jobs |
List batch job status |
get_batch_job_files |
Get batch job download info |
cancel_batch_job |
Cancel pending batch job |
download_batch_files |
Download completed batch files |
read_dbn_file |
Parse and read DBN files |
get_dbn_metadata |
Get DBN file metadata |
write_dbn_file |
Write data to DBN format |
convert_dbn_to_parquet |
Convert DBN to Parquet |
export_to_parquet |
Query and export to Parquet |
read_parquet_file |
Read Parquet files |
get_session_info |
Get trading session info |
list_publishers |
List data publishers |
list_fields |
List schema fields |
get_dataset_range |
Get dataset date range |
list_unit_prices |
Get pricing information |
analyze_data_quality |
Analyze data quality issues |
quick_analysis |
Comprehensive symbol analysis |
get_account_status |
Server status and metrics |
get_metrics |
Performance metrics |
clear_cache |
Clear API response cache |
Configuration
| Environment Variable | Description | Default |
|---|---|---|
DATABENTO_API_KEY |
Databento API key (required) | - |
DATABENTO_DATA_DIR |
Restrict file operations to directory | Current directory |
DATABENTO_LOG_LEVEL |
Logging level (DEBUG, INFO, WARNING, ERROR) | INFO |
DATABENTO_METRICS_ENABLED |
Enable metrics collection | true |
Common Datasets
| Dataset | Description |
|---|---|
GLBX.MDP3 |
CME Globex (ES, NQ, CL futures) |
XNAS.ITCH |
Nasdaq TotalView |
XNYS.PILLAR |
NYSE |
DBEQ.BASIC |
Consolidated US equities |
OPRA.PILLAR |
US options |
IFEU.IMPACT |
ICE Futures Europe |
Common Schemas
| Schema | Description |
|---|---|
trades |
Individual trades |
ohlcv-1m |
1-minute OHLCV bars |
ohlcv-1h |
1-hour OHLCV bars |
ohlcv-1d |
Daily OHLCV bars |
mbp-1 |
Top of book |
mbp-10 |
10-level order book |
tbbo |
Top bid/offer |
definition |
Instrument definitions |
Development
# Clone repository
git clone https://github.com/deepentropy/databento-mcp.git
cd databento-mcp
# Install with dev dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Format code
black src/
ruff check src/
License
Links
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.