Databases MCP Server (Access and SQLite 3)
Enables AI to interact with Microsoft Access (.mdb, .accdb) and SQLite 3 databases, including read-only support for Access 97 databases. Supports executing SQL queries, importing/export data from CSV and Excel files, and storing notes about database files.
README
Databases MCP Server (Access and SQLite 3)
A simple MCP server to let AI interact with Microsoft Access and SQLite 3 databases. Supports import/export with CSV and Excel files, and store human-readable notes about files.
WARNING: This server has full access to databases, so it can read and modify any data in it. Use with caution to avoid data loss!
Configuration
To use this MCP server with Claude Desktop (or any other MCP host), clone the repo and add the following to your config.json:
{
"mcpServers": {
"access-mdb": {
"command": "uv",
"args": [
"run",
"--with", "fastmcp",
"--with", "pandas",
"--with", "sqlalchemy-access",
"--with", "openpyxl",
"fastmcp", "run",
"path/to/repo/server.py"
],
}
}
}
Dev note: to use with uvx, we need to create a package and publish it to PyPI.
Supported Database Types
- Microsoft Access:
.mdband.accdbfiles- Supports both modern Access formats (via ACE ODBC driver)
- Supports legacy Access 97 databases (via access-parser library - read-only)
- SQLite 3:
.db,.sqlite, and.sqlite3files - In-memory SQLite: When no database path is specified
Access 97 Support
Access 97 (.mdb) databases are supported in read-only mode using the access-parser library. This allows:
- Reading data from Access 97 databases without needing ODBC drivers
- Basic SELECT queries to retrieve data
- No external dependencies (pure Python implementation)
Limitations:
- Access 97 databases are read-only (no INSERT, UPDATE, DELETE operations)
- Only basic SELECT queries are supported (no complex JOINs or subqueries)
- Parameterized queries are not supported for Access 97 databases
The server automatically detects Access 97 format and falls back to access-parser when needed.
Available Tools
Database management:
list: List all active databases available in the server.create: Create a new database file (for Microsoft Access, copies the empty.mdb template).connect: Connect to an existing database file, or creates an in-memory database if the file is not specified.disconnect: Close a database connection. For in-memory databases, this will clear all its data.
Data management:
query: Execute a SQL query to retrieve data from a database.update: Execute a SQL query to insert/update/delete data in a database.import_csv: Imports data from a CSV file into a database table.export_csv: Exports data from a database table to a CSV file.import_excel: Imports data from an Excel file into a database table.
Notes management:
read_notes: Reads notes from the specified file, or discovers notes in the specified directory.write_notes: Writes notes to the specified file, or linked to the specified database.
Note: Excel export is not implemented, use haris-musa/excel-mcp-server instead. The main problem is tracking the index of the rows and columns in the Excel file, to correctly import/export data to the same cells, and/or insert new rows/columns. In addition, merged cells complicate the process, it would be too complex to implement.
Project structure
Main files:
server.py: MCP server implementation.
Tests:
test_tools.py: Functions to test individual MCP tools.test_mcp.py: Tests all MCP tools in a typical workflow.
Documentation:
Scouting scripts, used in the first stages to develop basic functionality:
scouting_mdb.py: SQLAlchemy and pandas to interact with Microsoft Access databases.scouting_csv.py: SQLAlchemy and pandas to interact with CSV files.
TODO
- [x] Add tool to create a new database, copying empty.mdb to the specified path.
- [x] Add the ability to connect to multiple databases at the same time.
- [x] Add tool to list all tables in the database.
- [x] Add tools to import/export data from/to CSV files.
- [x] Add tools to import data from/to Excel files.
- [x] Add prompt to guide AI asking info to the user about the database.
- [x] Store info about files (.AInotes files), to retrieve it later.
- [ ] Add tool to remember imported/exported CSV and Excel files.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.