Daniel LightRAG MCP Server
A comprehensive MCP server that provides full integration with LightRAG API, offering 22 tools across document management, querying, knowledge graph operations, and system management.
README
Daniel LightRAG MCP Server
A comprehensive MCP (Model Context Protocol) server that provides full integration with LightRAG API, offering 22 tools across 4 categories for complete document management, querying, knowledge graph operations, and system management.
Features
- Document Management: 8 tools for inserting, uploading, scanning, retrieving, and deleting documents
- Query Operations: 2 tools for text queries with regular and streaming responses
- Knowledge Graph: 7 tools for accessing, checking, updating, and deleting entities and relations
- System Management: 5 tools for health checks, status monitoring, and cache management
Quick Start
-
Install the server:
pip install -e . -
Start LightRAG server (ensure it's running on http://localhost:9621)
-
Configure your MCP client (e.g., Claude Desktop):
{ "mcpServers": { "daniel-lightrag": { "command": "python", "args": ["-m", "daniel_lightrag_mcp"] } } } -
Test the connection: Use the
get_healthtool to verify everything is working.
Installation
# Basic installation
pip install -e .
# With development dependencies
pip install -e ".[dev]"
Usage
Command Line
Start the MCP server:
daniel-lightrag-mcp
Environment Variables
Configure the server with environment variables:
export LIGHTRAG_BASE_URL="http://localhost:9621"
export LIGHTRAG_API_KEY="your-api-key" # Optional
export LIGHTRAG_TIMEOUT="30" # Optional
export LOG_LEVEL="INFO" # Optional
daniel-lightrag-mcp
Configuration
The server expects LightRAG to be running on http://localhost:9621 by default. Make sure your LightRAG server is started before running this MCP server.
For detailed configuration options, see CONFIGURATION_GUIDE.md.
Available Tools (22 Total)
Document Management Tools (8 tools)
insert_text
Insert text content into LightRAG.
Parameters:
text(required): Text content to insert
Example:
{
"text": "This is important information about machine learning algorithms and their applications in modern AI systems."
}
insert_texts
Insert multiple text documents into LightRAG.
Parameters:
texts(required): Array of text documents with optional title and metadata
Example:
{
"texts": [
{
"title": "AI Overview",
"content": "Artificial Intelligence is transforming industries...",
"metadata": {"category": "technology", "author": "researcher"}
},
{
"content": "Machine learning algorithms require large datasets..."
}
]
}
upload_document
Upload a document file to LightRAG.
Parameters:
file_path(required): Path to the file to upload
Example:
{
"file_path": "/path/to/document.pdf"
}
scan_documents
Scan for new documents in LightRAG.
Parameters: None
Example:
{}
get_documents
Retrieve all documents from LightRAG.
Parameters: None
Example:
{}
get_documents_paginated
Retrieve documents with pagination.
Parameters:
page(required): Page number (1-based)page_size(required): Number of documents per page (1-100)
Example:
{
"page": 1,
"page_size": 20
}
delete_document
Delete a specific document by ID.
Parameters:
document_id(required): ID of the document to delete
Example:
{
"document_id": "doc_12345"
}
clear_documents
Clear all documents from LightRAG.
Parameters: None
Example:
{}
Query Tools (2 tools)
query_text
Query LightRAG with text.
Parameters:
query(required): Query textmode(optional): Query mode - "naive", "local", "global", or "hybrid" (default: "hybrid")only_need_context(optional): Whether to only return context without generation (default: false)
Example:
{
"query": "What are the main concepts in machine learning?",
"mode": "hybrid",
"only_need_context": false
}
query_text_stream
Stream query results from LightRAG.
Parameters:
query(required): Query textmode(optional): Query mode - "naive", "local", "global", or "hybrid" (default: "hybrid")only_need_context(optional): Whether to only return context without generation (default: false)
Example:
{
"query": "Explain the evolution of artificial intelligence",
"mode": "global"
}
Knowledge Graph Tools (7 tools)
get_knowledge_graph
Retrieve the knowledge graph from LightRAG.
Parameters: None
Example:
{}
get_graph_labels
Get labels from the knowledge graph.
Parameters: None
Example:
{}
check_entity_exists
Check if an entity exists in the knowledge graph.
Parameters:
entity_name(required): Name of the entity to check
Example:
{
"entity_name": "Machine Learning"
}
update_entity
Update an entity in the knowledge graph.
Parameters:
entity_id(required): ID of the entity to updateproperties(required): Properties to update
Example:
{
"entity_id": "entity_123",
"properties": {
"description": "Updated description for machine learning",
"category": "AI Technology"
}
}
update_relation
Update a relation in the knowledge graph.
Parameters:
relation_id(required): ID of the relation to updateproperties(required): Properties to update
Example:
{
"relation_id": "rel_456",
"properties": {
"strength": 0.9,
"type": "implements"
}
}
delete_entity
Delete an entity from the knowledge graph.
Parameters:
entity_id(required): ID of the entity to delete
Example:
{
"entity_id": "entity_789"
}
delete_relation
Delete a relation from the knowledge graph.
Parameters:
relation_id(required): ID of the relation to delete
Example:
{
"relation_id": "rel_101"
}
System Management Tools (5 tools)
get_pipeline_status
Get the pipeline status from LightRAG.
Parameters: None
Example:
{}
get_track_status
Get track status by ID.
Parameters:
track_id(required): ID of the track to get status for
Example:
{
"track_id": "track_abc123"
}
get_document_status_counts
Get document status counts.
Parameters: None
Example:
{}
clear_cache
Clear LightRAG cache.
Parameters: None
Example:
{}
get_health
Check LightRAG server health.
Parameters: None
Example:
{}
Example Workflows
Complete Document Management Workflow
-
Check server health:
{"tool": "get_health", "arguments": {}} -
Insert documents:
{ "tool": "insert_texts", "arguments": { "texts": [ { "title": "AI Research Paper", "content": "Recent advances in transformer architectures have shown remarkable improvements in natural language understanding tasks...", "metadata": {"category": "research", "year": 2024} } ] } } -
Query the knowledge base:
{ "tool": "query_text", "arguments": { "query": "What are the recent advances in transformer architectures?", "mode": "hybrid" } } -
Explore the knowledge graph:
{"tool": "get_knowledge_graph", "arguments": {}} -
Check entity existence:
{ "tool": "check_entity_exists", "arguments": {"entity_name": "transformer architectures"} }
Knowledge Graph Management Workflow
-
Get current graph structure:
{"tool": "get_knowledge_graph", "arguments": {}} -
Get available labels:
{"tool": "get_graph_labels", "arguments": {}} -
Update entity properties:
{ "tool": "update_entity", "arguments": { "entity_id": "transformer_arch_001", "properties": { "description": "Advanced neural network architecture for sequence processing", "applications": ["NLP", "computer vision", "speech recognition"], "year_introduced": 2017 } } } -
Update relation properties:
{ "tool": "update_relation", "arguments": { "relation_id": "rel_improves_002", "properties": { "improvement_factor": 2.5, "confidence": 0.92, "evidence": "Multiple benchmark studies" } } }
System Monitoring Workflow
-
Check overall health:
{"tool": "get_health", "arguments": {}} -
Monitor pipeline status:
{"tool": "get_pipeline_status", "arguments": {}} -
Check document processing status:
{"tool": "get_document_status_counts", "arguments": {}} -
Track specific operations:
{ "tool": "get_track_status", "arguments": {"track_id": "upload_batch_001"} } -
Clear cache when needed:
{"tool": "clear_cache", "arguments": {}}
Error Handling
The server provides comprehensive error handling with detailed error messages:
- Connection Errors: When LightRAG server is unreachable
- Authentication Errors: When API key is invalid or missing
- Validation Errors: When input parameters are invalid
- API Errors: When LightRAG API returns errors
- Timeout Errors: When requests exceed timeout limits
- Server Errors: When LightRAG server returns 5xx status codes
All errors include:
- Error type and message
- HTTP status code (when applicable)
- Timestamp
- Tool name that caused the error
- Additional context data when available
Error Response Format
{
"tool": "insert_text",
"error_type": "LightRAGConnectionError",
"message": "Failed to connect to LightRAG server at http://localhost:9621",
"timestamp": 1703123456.789,
"status_code": null,
"response_data": {}
}
Common Error Scenarios
Connection Errors
{
"error_type": "LightRAGConnectionError",
"message": "Connection refused to http://localhost:9621",
"status_code": null
}
Validation Errors
{
"error_type": "LightRAGValidationError",
"message": "Missing required arguments for query_text: ['query']",
"validation_errors": [
{
"loc": ["query"],
"msg": "field required",
"type": "value_error.missing"
}
]
}
API Errors
{
"error_type": "LightRAGAPIError",
"message": "Document not found",
"status_code": 404,
"response_data": {
"detail": "Document with ID 'doc_123' does not exist"
}
}
Troubleshooting
Quick Diagnostics
-
Check LightRAG Server Status:
curl http://localhost:9621/health -
Test MCP Server:
python -m daniel_lightrag_mcp & sleep 2 pkill -f daniel_lightrag_mcp -
Verify Installation:
python -c "import daniel_lightrag_mcp; print('OK')"
Common Issues
Server Won't Start
- Check Python version: Requires Python 3.8+
- Verify dependencies: Run
pip install -e . - Check port availability: Ensure no conflicts on stdio
Connection Refused
- LightRAG not running: Start LightRAG server first
- Wrong URL: Verify
LIGHTRAG_BASE_URLenvironment variable - Firewall blocking: Check firewall settings for port 9621
Authentication Failed
- Missing API key: Set
LIGHTRAG_API_KEYenvironment variable - Invalid key: Verify API key with LightRAG server
- Key format: Ensure key format matches LightRAG expectations
Timeout Errors
- Increase timeout: Set
LIGHTRAG_TIMEOUT=60environment variable - Check server load: Verify LightRAG server performance
- Network latency: Test direct API calls with curl
Tool Not Found
- Restart MCP client: Reload server configuration
- Check tool name: Verify exact tool name spelling
- Server registration: Ensure all 22 tools are listed
Debug Mode
Enable detailed logging:
export LOG_LEVEL=DEBUG
python -m daniel_lightrag_mcp
Getting Help
- Check server logs for detailed error messages
- Test individual tools with minimal examples
- Verify LightRAG server is responding correctly
- Review the Configuration Guide for setup details
Development
Install development dependencies:
pip install -e ".[dev]"
Run tests:
pytest
Run tests with coverage:
pytest --cov=src/daniel_lightrag_mcp --cov-report=html
Format code:
black src/ tests/
isort src/ tests/
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.