Daily Work MCP Server

Daily Work MCP Server

Enables recording, querying, and summarizing daily work entries with tags using a local SQLite database. Supports work logging, search, timeline queries, tag management, and automated reminders for tracking daily tasks.

Category
Visit Server

README

Daily Work MCP Server

一个用于记录、查询和总结每日工作内容的本地 MCP Server,基于 FastAPI + FastMCP + SQLite 实现。

运行前准备

  1. 安装依赖:
    conda create -n daily-work-mcp python=3.11 -y
    conda activate daily-work-mcp
    pip install -r requirements.txt
    
  2. 初始化数据库(首次运行必须执行):
    python scripts/init_db.py
    

启动方式

启动 HTTP API(可选)

uvicorn app.main:app --reload

默认监听 http://127.0.0.1:8000,包含以下 REST 接口:

  • POST /entries:新增工作内容
  • GET /entries:按 daily/weekly 查询
  • GET /entries/search:全文搜索
  • GET /entries/export:导出 JSON 或 CSV
  • GET /entries/summary:最近 N 天标签聚合
  • GET /entries/reminder:检查今日是否已有记录
  • GET /tags / POST /tags:标签管理

启动 MCP Server

python scripts/run_mcp_server.py

默认以 STDIO transport 运行;如果需要通过 HTTP/Streamable HTTP 暴露端口,可改用:

python scripts/run_mcp_server.py --transport streamable-http --host 127.0.0.1 --port 8888

脚本在 HTTP/Streamable 模式下会自动启用 stateless HTTP,即 /mcp 端点无需任何 Session/Cookie 即可访问,方便 IDE 直接连到 http://127.0.0.1:8888/mcp。 手工调试时记得同时声明 Accept: application/json, text/event-stream,例如:

curl -N \
  -H "Accept: application/json, text/event-stream" \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc":"2.0","id":"1","method":"ping","params":{}}' \
  http://127.0.0.1:8888/mcp

该脚本会调用 app/mcp/server.py 中的 mcp.run() 并注册全部工具:

  • record_work_entry:新增条目
  • list_work_entries:按日/周查询
  • search_work_entries:关键字检索
  • summarize_recent_work:标签汇总
  • check_today_recorded:今日提醒状态
  • list_tags / create_tag:标签列表与新增

MCP 客户端连接该进程后即可直接调用上述工具。

使用示例

  • 新增条目(REST):
    curl -X POST http://127.0.0.1:8000/entries \
         -H "Content-Type: application/json" \
         -d '{"description":"排查登录问题","tags":["infra/login"]}'
    
  • 查询本周条目(REST):
    curl "http://127.0.0.1:8000/entries?range=weekly"
    
  • MCP 调用:在支持 MCP 的客户端中,将 scripts/run_mcp_server.py 作为 Server 入口,即可在会话中调用 record_work_entrylist_work_entries 等工具。

更多需求说明见 requirements.md

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured