CX TimeFilter MCP Server
Provides time filter tools for CX Dashboard integration, allowing users to set predefined time periods, custom date ranges, and manage time-based filtering across dashboard tabs. Supports HTTP-based MCP protocol with optional authentication for seamless integration with MCP-compatible clients like Langflow.
README
CX TimeFilter MCP Server
A Model Context Protocol (MCP) server providing time filter tools for CX Dashboard. This server exposes time filtering functionality that can be used by any MCP-compatible client, including Langflow.
🎯 Features
- Set Predefined Time Periods: Last Month, Last 7 days, This Quarter, etc.
- Set Custom Date Ranges: Specify exact start and end dates
- List Available Periods: Get all supported time periods
- HTTP-based MCP Protocol: Easy integration with any MCP client
- Optional Authentication: API key protection
- Comprehensive Validation: Input validation and error handling
🚀 Quick Start
1. Installation
# Clone or create the project directory
mkdir cx-timefilter-mcp-server
cd cx-timefilter-mcp-server
# Install dependencies
npm install
2. Configuration
# Copy environment template
cp env.example .env
# Edit .env file
PORT=3000
NODE_ENV=development
MCP_API_KEY=your-secret-api-key-here
ALLOWED_ORIGINS=http://localhost:3001,https://your-langflow-instance.com
3. Run the Server
# Development mode
npm run dev
# Production mode
npm start
# Run tests
npm test
4. Verify Installation
# Health check
curl http://localhost:3000/health
# List available tools
curl http://localhost:3000/mcp/tools
# Test a tool (with API key if configured)
curl -X POST http://localhost:3000/mcp/tools/call \
-H "Content-Type: application/json" \
-H "Authorization: Bearer your-api-key" \
-d '{
"name": "set_time_period",
"arguments": {
"timePeriodName": "Last Month",
"tabName": "Overview"
}
}'
🛠️ Available Tools
1. set_time_period
Set a predefined time period for dashboard tabs.
Parameters:
timePeriodName(string): Exact name of the time periodtabName(string): Dashboard tab name
Example:
{
"name": "set_time_period",
"arguments": {
"timePeriodName": "Last Month",
"tabName": "Overview"
}
}
2. set_custom_date_range
Set a custom date range with specific start and end dates.
Parameters:
startDate(string): Start date in YYYY-MM-DD formatendDate(string): End date in YYYY-MM-DD formattabName(string): Dashboard tab name
Example:
{
"name": "set_custom_date_range",
"arguments": {
"startDate": "2024-01-01",
"endDate": "2024-01-31",
"tabName": "Comparison"
}
}
3. list_time_periods
List all available predefined time periods.
Parameters: None
Example:
{
"name": "list_time_periods",
"arguments": {}
}
🔗 API Endpoints
| Endpoint | Method | Description |
|---|---|---|
/health |
GET | Health check |
/mcp/info |
GET | MCP protocol information |
/mcp/tools |
GET | List available tools |
/mcp/tools/call |
POST | Execute a tool |
/mcp |
POST | Full MCP protocol endpoint |
🔐 Authentication
The server supports optional API key authentication:
- Set API Key: Add
MCP_API_KEY=your-secret-keyto.env - Include in Requests: Add
Authorization: Bearer your-secret-keyheader - Alternative Formats:
ApiKey your-secret-keyorKey your-secret-key
🌐 Langflow Integration
Step 1: Add MCP Tools Component
- Open your Langflow project
- Add an "MCP Tools" component
- Configure the connection
Step 2: Configure Connection
{
"serverName": "CX TimeFilter Server",
"connectionMode": "HTTP",
"serverUrl": "http://localhost:3000",
"apiKey": "your-api-key",
"endpoints": {
"tools": "/mcp/tools",
"call": "/mcp/tools/call"
}
}
Step 3: Use Tools in Flows
The tools will appear in Langflow and can be used in your AI workflows.
📦 Deployment
Railway (Recommended)
# Install Railway CLI
npm install -g @railway/cli
# Login and deploy
railway login
railway init
railway up
Render
- Connect your GitHub repository
- Set environment variables
- Deploy automatically
Docker
FROM node:18-alpine
WORKDIR /app
COPY package*.json ./
RUN npm install
COPY . .
EXPOSE 3000
CMD ["npm", "start"]
🧪 Testing
# Run built-in tests
npm test
# Manual testing with curl
curl -X POST http://localhost:3000/mcp/tools/call \
-H "Content-Type: application/json" \
-d '{
"name": "list_time_periods",
"arguments": {}
}'
📊 Supported Time Periods
Calendar Periods:
- All Time, Today, Yesterday
- This Week, Last Week
- This Month, Last Month
- This Quarter, Last Quarter
- This Year, Last Year
Rolling Periods:
- Last 24 hours, Last 7 days, Last 14 days
- Last 30 days, Last 90 days, Last 180 days
- Last 12 Months
Custom Periods:
- Any date range in YYYY-MM-DD format
🔧 Development
Project Structure
cx-timefilter-mcp-server/
├── src/
│ ├── server.js # Main server
│ ├── tools/
│ │ └── timefilter.js # Time filter tools
│ ├── utils/
│ │ └── mcp-protocol.js # MCP utilities
│ ├── middleware/
│ │ └── auth.js # Authentication
│ └── test.js # Test suite
├── package.json
├── .env
└── README.md
Adding New Tools
- Create tool definition in
src/tools/ - Add validation schema
- Implement execute function
- Export in tools array
- Update README
🐛 Troubleshooting
Common Issues:
- Port already in use: Change
PORTin.env - CORS errors: Update
ALLOWED_ORIGINSin.env - Auth failures: Check
MCP_API_KEYconfiguration - Tool not found: Verify tool name matches exactly
Debug Mode:
NODE_ENV=development npm start
📄 License
MIT License - see LICENSE file for details.
🤝 Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
Ready to integrate with Langflow and start filtering time periods via MCP! 🎉
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.