Customer Registration MCP Server
Enables creating and managing customer records via an external API with Bearer token authentication, supporting required fields (name, email, phone) and extensive optional data including addresses, UTM parameters, and tags.
README
Customer Registration MCP Server & Chatbot
This project provides two main components:
- MCP Server: A Model Context Protocol server for customer registration via an external API
- AI Chatbot: An OpenAI GPT-4o-mini powered chatbot that integrates with the MCP server via REST API
Features
MCP Server
- ✅ MCP-compliant server implementation (stdio transport)
- ✅ Bearer token authentication
- ✅ Required field validation (name, email, phone)
- ✅ Support for all optional customer fields
- ✅ Comprehensive error handling
- ✅ Development logging
- ✅ TypeScript implementation
AI Chatbot
- ✅ OpenAI GPT-4o-mini integration
- ✅ Configurable tone/style via environment variables
- ✅ REST API endpoint (
/api/chat) - ✅ Automatic MCP tool invocation based on conversation
- ✅ Conversation history management
- ✅ Express-based HTTP server
Prerequisites
- Node.js 18+
- Yarn package manager
Installation
- Install dependencies:
yarn install
- Configure environment variables:
Copy the example file and edit with your values:
cp .env.example .env
Edit .env:
# MCP Server Configuration
CUSTOMER_API_HOST=https://your-api-host.com
CUSTOMER_API_TOKEN=your_bearer_token_here
NODE_ENV=development
# Chatbot Configuration
OPENAI_API_KEY=sk-your-openai-api-key-here
AGENT_TONE=Professional, helpful, and efficient
# Alternative: AGENT_STYLE=Encouraging, visionary, witty
# Chatbot Server Port (optional, defaults to 3000)
CHATBOT_PORT=3000
Note: AGENT_TONE or AGENT_STYLE controls the chatbot's personality.
Usage
Running the MCP Server (standalone)
Development Mode:
yarn dev
Or with watch mode:
yarn watch
Production Mode:
# Build
yarn build
# Run
yarn start
Running the AI Chatbot Server
Development Mode:
yarn chatbot:dev
Production Mode:
# Build
yarn chatbot:build
# Run
yarn chatbot:start
The chatbot server will start on port 3000 (or your configured CHATBOT_PORT).
Chatbot API Endpoints
POST /api/chat
Send a message to the chatbot:
curl -X POST http://localhost:3000/api/chat \
-H "Content-Type: application/json" \
-d '{
"message": "Register a customer: John Doe, john@example.com, +1234567890",
"context": {}
}'
Response:
{
"reply": "Great! I've successfully registered John Doe as a customer. The customer ID is 12345.",
"actions": [
{
"tool": "createCustomer",
"input": {
"name": "John Doe",
"email": "john@example.com",
"phone": "+1234567890"
},
"result": {
"status": "success",
"customerId": 12345,
"data": {...}
}
}
]
}
POST /api/chat/reset
Reset the conversation history:
curl -X POST http://localhost:3000/api/chat/reset
GET /health
Health check:
curl http://localhost:3000/health
MCP Tool: createCustomer
Required Parameters
name(string): Customer full nameemail(string): Customer email address (validated)phone(string): Customer phone number
Optional Parameters
retention(boolean): Retention flagidentification(string): Customer ID document (e.g., CPF)zipcode(string): ZIP/Postal codestate(string): State/Provincestreet(string): Street namenumber(string): Street numberneighborhood(string): Neighborhoodcity(string): Citylist_ids(number): List ID for categorizationcreate_deal(boolean): Whether to create a dealtags(string): Tags for the customerurl(string): URL referenceutm_term(string): UTM term parameterutm_medium(string): UTM medium parameterutm_source(string): UTM source parameterutm_campaign(string): UTM campaign parametercompany_id(string): Company IDutm_content(string): UTM content parameter
Example Request
{
"name": "Tony Stark",
"email": "newone@avengers.com",
"phone": "(12) 99756-0001",
"city": "São Paulo",
"retention": true,
"identification": "251.482.720-58",
"tags": "coyo-jan"
}
Example Success Response
{
"status": "success",
"customerId": 12345,
"data": {
"id": 12345,
"name": "Tony Stark",
"email": "newone@avengers.com",
...
}
}
Example Error Response
{
"status": "error",
"error": "Validation failed",
"errors": [
"email is required",
"phone is required"
]
}
Configuring with MCP Clients
To use this server with an MCP-compatible client (like Claude Desktop), add the following to your MCP settings configuration:
{
"mcpServers": {
"customer-registration": {
"command": "node",
"args": ["/absolute/path/to/mcpNova/build/index.js"],
"env": {
"CUSTOMER_API_HOST": "https://your-api-host.com",
"CUSTOMER_API_TOKEN": "your_bearer_token_here",
"NODE_ENV": "production"
}
}
}
}
How the Chatbot Works
- User sends a message to
/api/chat - Chatbot adds message to conversation history
- OpenAI GPT-4o-mini processes the message with configured system prompt
- If LLM determines an action is needed (e.g.,
createCustomer), it responds with JSON - Chatbot extracts the action and calls MCP server via stdio
- MCP server validates data and calls the external customer API
- Result is returned to LLM for a friendly follow-up message
- Final response sent back to user
Example Chatbot Conversations
Simple Registration:
User: Register a customer: Jane Smith, jane@smith.com, +1-555-1234
Chatbot: I've successfully registered Jane Smith! The customer ID is 67890.
Multi-turn Conversation:
User: I need to add a new customer
Chatbot: `I'd be happy to help! I'll need:
- Full name
- Email address
- Phone number`
User: Name: Bob Johnson, Email: bob@johnson.com, Phone: 555-9876, City: New York
Chatbot: Perfect! I've registered Bob Johnson. Customer ID: 11223
Project Structure
mcpNova/
├── src/
│ ├── index.ts # MCP Server (stdio)
│ ├── chatbotServer.ts # Express REST API server
│ └── services/
│ ├── customerService.ts # Customer API integration
│ ├── mcpClient.ts # MCP client (stdio communication)
│ └── chatbotService.ts # OpenAI integration & logic
├── build/ # Compiled TypeScript
├── package.json
├── tsconfig.json
├── .env # Environment variables (gitignored)
├── .env.example # Environment template
└── README.md
API Endpoint
POST https://{{host}}/api/v1/customers
Headers:
Authorization: Bearer {{TOKEN}}Content-Type: application/json
Development Logging
When NODE_ENV=development, the server logs:
- Request URLs and payloads
- Response status and data
- API errors with details
Error Handling
The server handles:
- Missing or invalid required fields
- HTTP errors from the external API
- Network connectivity issues
- Invalid Bearer tokens
- Malformed requests
Security
- Environment variables are used for sensitive data (API host and token)
.envfiles are gitignored- Bearer token is never logged or exposed
- Email validation prevents basic injection attempts
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.