Custom PDF MCP Server
A server designed for processing PDF documents, enabling text extraction, table data retrieval, and metadata collection from local files. It allows users to scan directories for PDFs and read specific pages, specifically optimized for thesis literature analysis.
README
Custom PDF MCP Server
基于 FastMCP 构建的自定义 PDF 处理服务器,专为毕业论文文献处理设计。
功能特性
- 读取PDF文本: 支持提取整个PDF或指定页面的文本内容
- 提取表格数据: 可选择提取PDF中的表格结构
- 获取PDF信息: 提取PDF的元数据信息(作者、标题等)
- 列出PDF文件: 扫描目录下所有PDF文件
- 安全限制: 只能访问当前工作目录下的文件
安装方法
方法一:使用 uv(推荐)
# 克隆项目
git clone https://github.com/Waicy/-pdf-mcp-.git
cd pdf-mcp
# 创建虚拟环境并安装依赖
uv sync
方法二:使用 pip
# 克隆项目
git clone https://github.com/yourusername/pdf-mcp.git
cd pdf-mcp
# 安装依赖
pip install . --index-url https://pypi.tuna.tsinghua.edu.cn/simple
使用方法
1. 直接运行测试
# 如果使用 uv
uv run pdf-mcp
# 如果使用传统方式
python src/pdf_mcp_server.py
2. 配置 Claude Desktop
在 claude_desktop_config.json 中添加以下配置:
{
"mcpServers": {
"pdf-reader-custom": {
"command": "uv",
"args": [
"--directory",
"path/to/your/pdf-mcp",
"run",
"pdf-mcp"
]
}
}
}
注意:
- 将
path/to/your/pdf-mcp替换为实际的项目路径
可用工具
read_pdf_text
读取PDF文件并提取文本内容
参数:
file_path: PDF文件路径(相对于工作目录)page_numbers: 可选,要提取的页面号列表extract_tables: 可选,是否提取表格数据
get_pdf_info
获取PDF文件的基本信息和元数据
参数:
file_path: PDF文件路径
list_pdfs_in_directory
列出指定目录下的所有PDF文件
参数:
directory_path: 目录路径,默认为当前目录
使用示例
-
读取整个PDF:
read_pdf_text("文献整理/某篇论文.pdf") -
只读取特定页面:
read_pdf_text("文献整理/某篇论文.pdf", [1, 2, 3]) -
提取表格数据:
read_pdf_text("文献整理/某篇论文.pdf", extract_tables=True) -
获取PDF信息:
get_pdf_info("文献整理/某篇论文.pdf") -
列出所有PDF:
list_pdfs_in_directory("文献整理")
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.