Custom MCP Server for Cursor

Custom MCP Server for Cursor

Connects to Cursor and enables deep web searches via Linkup and RAG capabilities using LlamaIndex.

Category
Visit Server

README

MCP - Système de Question-Réponse avec RAG

MCP est un système de question-réponse avancé utilisant la technique RAG (Retrieval-Augmented Generation) pour fournir des réponses précises et contextuelles basées sur un corpus de documents.

Fonctionnalités

  • 🔍 Recherche sémantique dans les documents
  • 💾 Mise en cache intelligente avec Redis
  • 📊 Stockage persistant avec MongoDB
  • 🤖 Intégration avec OpenAI pour les embeddings et la génération de texte
  • 📈 Monitoring et métriques du système
  • 🔄 Gestion asynchrone des opérations

Prérequis

  • Python 3.9+
  • MongoDB Community Edition
  • Redis
  • Clé API OpenAI

Installation

  1. Cloner le dépôt :
git clone https://github.com/votre-username/mcp.git
cd mcp
  1. Installer les dépendances système :
# MongoDB
brew tap mongodb/brew
brew install mongodb-community
brew services start mongodb-community

# Redis
brew install redis
brew services start redis
  1. Configurer l'environnement Python :
python -m venv .venv
source .venv/bin/activate  # Sur Unix/macOS
pip install -r requirements.txt
  1. Configurer les variables d'environnement :
cp .env.example .env
# Éditer .env avec vos configurations

Utilisation rapide

from src.rag import RAGWorkflow

# Initialisation
rag = RAGWorkflow()

# Ingestion de documents
await rag.ingest_documents("chemin/vers/documents")

# Interrogation
response = await rag.query("Votre question ici ?")

Documentation

Tests

python -m pytest tests/ -v

Structure du projet

mcp/
├── src/
│   ├── __init__.py
│   ├── rag.py              # Workflow RAG principal
│   ├── models.py           # Modèles de données
│   ├── mongo_operations.py # Opérations MongoDB
│   ├── redis_operations.py # Opérations Redis
│   └── database.py         # Configuration de la base de données
├── tests/
│   ├── __init__.py
│   ├── test_mcp.py
│   └── test_mongo_integration.py
├── prompts/
│   ├── system_prompt.txt
│   ├── query_prompt.txt
│   └── response_prompt.txt
├── docs/
│   ├── installation.md
│   ├── usage.md
│   ├── architecture.md
│   └── api.md
├── requirements.txt
├── .env.example
└── README.md

Contribution

  1. Fork le projet
  2. Créer une branche pour votre fonctionnalité (git checkout -b feature/AmazingFeature)
  3. Commit vos changements (git commit -m 'Add some AmazingFeature')
  4. Push vers la branche (git push origin feature/AmazingFeature)
  5. Ouvrir une Pull Request

Licence

Ce projet est sous licence MIT. Voir le fichier LICENSE pour plus de détails.

Contact

Votre Nom - @votre_twitter

Lien du projet : https://github.com/votre-username/mcp

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured